
SafeNet Luna PCIe HSMClient 10.1
FM SDK PROGRAMMING GUIDE

Document Information

Document Information

Product Version 10.1

Document Part Number 007-000553-001

Release Date 23 January 2020

Revision History

Revision Date Reason

Rev. A 23 January 2020 Initial release

Trademarks, Copyrights, and Third-Party Software
Copyright 2001-2020 Thales. All rights reserved. Thales and the Thales logo are trademarks and service
marks of Thales and/or its subsidiaries and are registered in certain countries. All other trademarks and service
marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Thales and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Thales’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Thales makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Thales reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 2

Thales hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Thales be liable, whether in contract, tort or otherwise, for any indirect, special or consequential
damages or any damages whatsoever including but not limited to damages resulting from loss of use, data,
profits, revenues, or customers, arising out of or in connection with the use or performance of information
contained in this document.

Thales does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Thales be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Thales products. Thales disclaims any liability with respect to security for
direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Thales Group.

Regulatory Compliance
This product complies with the following regulatory regulations. To ensure compliancy, ensure that you install
the products as specified in the installation instructions and use only Thales-supplied or approved accessories.

USA, FCC
This equipment has been tested and found to comply with the limits for a “Class B” digital device, pursuant to
part 15 of the FCC rules.

Canada
This class B digital apparatus meets all requirements of the Canadian interference-causing equipment
regulations.

Europe
This product is in conformity with the protection requirements of EC Council Directive 2014/30/EU. This product
satisfies the CLASSB limits of EN55032.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 3

CONTENTS

Document Information 2

Preface: About the FM SDK Programming Guide 8
Customer Release Notes 9
Audience 9
Document Conventions 9
Support Contacts 11

Chapter 1: Setup 12
Software Installation 12
Requirements 12

Chapter 2: FM Architecture 14
FM Support within the HSM Hardware 14
FM Support in Emulation Mode 15
Multiple FMs 15
Memory for FMs 16

Chapter 3: FM Development 17
Lifecycle Overview 17
Initial Development 18
Adapter Build 18
Production Build 18
Key Management 19
Contents of the Luna FM SDK package directory 19
SDK Installation Tips 20
Set the Environment 20

Protecting Data Storage of FM 20
Scatter Gather FM Message Dispatching 21
Handling Host Processes IDs 22
C_CloseAllSessions - Notes 22

Memory Alignment Issues 23
Memory Endian Issues 23
Compiling FMs 23
Include Path 24
PPO Compatibility INCLUDE Files 24
C_Flags 24
L_Flags 24

Building Applications that Talk to FMs 25
INCLUDE PATH 25

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 4

PPO Compatibity INCLUDE Files 25
L_FLAGS 25

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs 27
Summary 27
HSMManagement and Security Features 28
Configuration 28
Roles 28
Authentication and Activation 29
Tool Set 30
Per Partition SO introduced by Admin 30

FM Programming APIs 30
FMCEAPI and CipherObj 30
Public Key Certificate Management 31
Cryptoki Attributes 31
Client and FM Extension Functions 31
JHSM 32
Compatibility Header Files 32

PTK Function Patching 32
OS_GetCprovFuncTable() 32
Administration Patching 32
Custom Mechanisms 32
FM_GetCurrentOid() and FM_GetCurrentPid() 33
FM_SetAppUserData, FM_SetTokenUserData, FM_SetTokenAppUserData, FM_SetSlotUserData 33
OS_GetCprovFuncTable() 33

Chapter 5: FM Samples 35
Signing FM Images 36
Export a Self-Signed Certificate and Copy to Other HSMs 37
Sample: skeleton 37
skeleton Test Application 38
Sample: pinenc: 38
pinenc Test Application 40
Sample: wrap-comp: 41
wrap-comp Test Application 42

Chapter 6: Utilities Reference 44
cmu 44
ctfm 44
mkfm 48
fmrecover 49

Chapter 7: Cryptographic Engine 51

Chapter 8: Cipher Objects 56

Chapter 9: Hash Objects 57

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 5

Chapter 10: Setting Privilege Level 58

Chapter 11: SMFS Reference 59
SmFsCreateDir 62
SmFsCloseFile 63
SmFsCalcFree 64
SmFsCreateFile 65
SmFsCreateFileClr 65
SmFsDeleteFile 67
SmFsFindFile 68
SmFsFindFileClose 69
SmFsFindFileInit 70
SmFsGetFileAttr 71
SmFsGetOpenFileAttr 72
SmFsOpenFile 73
SmFsReadFile 74
SmFsRenameFile 75
SmFsWriteFile 76

Chapter 12: FMDebug Reference 77
printf/vprintf 78
dump 79

Chapter 13: Message Dispatch API Reference 80
MD_Initialize 81
MD_Finalize 82
MD_GetHsmCount 83
MD_GetHsmState 84
MD_ResetHsm 86
MD_SendRecieve 87
MD_GetParameter 90
MD_GetEmbeddedSlotID 91
MD_FmIdFromName 91
MD_GetHsmInfo 92

Information Types 93
MD_GetHsmIndexForSlot 94

Chapter 14: HSM Functions Reference 95
Message Streaming Functions 98
SVC_IO_Read 99
SVC_IO_Write 100
SVC_IO_GetReadPointer 101
SVC_IO_GetReadBuffer 102
SVC_IO_UpdateReadPointer 103
SVC_IO_GetWritePointer 104
SVC_IO_GetWriteBuffer 105

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 6

SVC_IO_UpdateWritePointer 106
HIFACEReply Management Functions 107
SVC_GetReplyBuffer 108
SVC_ConvertReqToReply 109
SVC_SendReply 110
SVC_ResizeReplyBuffer 111
SVC_DiscardReplyBuffer 112
SVC_GetUserReplyBuffLen 113
SVC_GetRequest 114
SVC_GetRequestLength 115
SVC_GetReply 116
SVC_GetReplyLength 117

Functionality Module Dispatch Switcher Functions 118
FMSW_RegisterRandomDispatch 119
FMSW_RegisterStreamDispatch 120

FM Support Functions 121
FM_GetNDRandom 122
FM_AddToExtLog 123
FM_GetHsmInfo 123

Serial Communication Functions 124
SERIAL_SendData 125
Description 125
Parameters 125
SERIAL_RecieveData 126
SERIAL_WaitReply 127
SERIAL_FlushRX 128
SERIAL_GetNumPorts 129
SERIAL_InitPort 130
SERIAL_GetControlLines 131
SERIAL_SetControlLines 132
SERIAL_SetMode 133
SERIAL_Open 134
SERIAL_Close 135

High Resolution Timer Functions 136
THR_BeginTiming 137
THR_UpdateTiming 138

Current Application ID functions 139
FM_GetCurrentAppId 140
FM_SetCurrentAppId 141

PKCS#11 State Management Functions 142
FM_SetSessionUserData 143
FM_GetSessionUserData 144

FM Header Definition Macro 145

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 7

PREFACE: About the FM SDK Programming
Guide

AFunctionality Module (FM) is a custom-developed, customer-specific code that operates within the secure
confines of a Hardware Security Module (HSM).

This document is intended for software developers, as a technical reference which describes the programming
methodologies and functions used for the development of Functionality Modules and host-side applications. It
also describes the tools and requirements for the management of FMs on compliant HSMs.

FMs allow application developers to design security sensitive program code that can be loaded into the HSM to
operate as part of the HSM firmware.

The FM concept allows developers to place their most sensitive algorithms within the logical and physical
security perimeter of the HSM. AHSM is the pinnacle of a systems trust pyramid and ultimate solution to the
threats of malicious tampering and secret exposure.

FMs can make extensive use of the HSM functionality, which is provided using a PKCS#11 compliant
Application Programming Interface (API) and a rich set of commands available just to FMs.

The FM has access to tamper protected persistent storage so it can manage its own keys and critical
parameters independently of the PKCS#11 objects.

The FM also has direct access to a RS232 interface (using a USB dongle) of the HSM and can use this port to
implement a physically trusted path to an external device.

The SafeNet Luna FM SDK Package allows developers an extensive opportunity to create a large range of
customized high security applications.

NOTE This feature has software and/or firmware dependencies. See Version
Dependencies by Feature for more information.

This document describes how to use the FM SDK to write, test, install, and use functionality modules to provide
custom functions on the HSM. It contains the following chapters:

> "Setup" on page 12

> "FMArchitecture" on page 14

> "FM Development" on page 17

> "FMSamples" on page 35

> "Utilities Reference" on page 44

> "Cryptographic Engine" on page 51

> "Cipher Objects" on page 56

> "HashObjects" on page 57

> "Setting Privilege Level" on page 58

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 8

Preface: About the FM SDKProgramming Guide

> "SMFS Reference" on page 59

> "FMDebugReference" on page 77

> "Message Dispatch API Reference" on page 80

> "Cryptoki Extension" on page 1

> "HSMFunctionsReference" on page 95
The preface includes the following information about this document:

> "Customer Release Notes" below

> "Audience" below

> "Document Conventions" below

> "Support Contacts" on page 11

For information regarding the document status and revision history, see "Document Information" on page 2.

Customer Release Notes
The customer release notes (CRN) provide important information about this release that is not included in the
customer documentation. Read the CRN to fully understand the capabilities, limitations, and known issues for
this release. You can view or download the latest version of the CRN from the Technical Support Customer
Portal at https://supportportal.gemalto.com.

Audience
This document is intended for personnel responsible for maintaining your organization's security
infrastructure. This includes SafeNet Luna HSM users and security officers, key manager administrators, and
network administrators.

All products manufactured and distributed by Thales Group are designed to be installed, operated, and
maintained by personnel who have the knowledge, training, and qualifications required to safely perform the
tasks assigned to them. The information, processes, and procedures contained in this document are intended
for use by trained and qualified personnel only.

It is assumed that the users of this document are proficient with security concepts.

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

NOTE Take note. Contains important or helpful information.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 9

https://supportportal.gemalto.com/

Preface: About the FM SDKProgramming Guide

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

CAUTION! Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

WARNING Be extremely careful and obey all safety and security measures. In
this situation you might do something that could result in catastrophic data loss or
personal injury.

Command syntax and typeface conventions

Format Convention

bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select thePrint Duplex check box.)
> Dialog box titles (On theProtect Document dialog box, click Yes.)
> Field names (User Name: Enter the name of the user.)
> Menu names (On the Filemenu, click Save.) (Click Menu > Go To > Folders.)
> User input (In theDate box, typeApril 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

<variable> In command descriptions, angle brackets represent variables. Youmust substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter the
keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{a|b|c}
{<a>||<c>}

Represent required alternate keywords or <variables> in a command line description. Youmust
choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[a|b|c]
[<a>||<c>]

Represent optional alternate keywords or variables in a command line description. Choose one
command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 10

Preface: About the FM SDKProgramming Guide

Support Contacts
If you encounter a problem while installing, registering, or operating this product, please refer to the
documentation before contacting support. If you cannot resolve the issue, contact your supplier or Thales
Customer Support.

Thales Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is
governed by the support plan arrangements made between Thales and your organization. Please consult this
support plan for further information about your entitlements, including the hours when telephone support is
available to you.

Customer Support Portal
The Customer Support Portal, at https://supportportal.gemalto.com, is where you can find solutions for most
common problems. The Customer Support Portal is a comprehensive, fully searchable database of support
resources, including software and firmware downloads, release notes listing known problems and
workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You can also use
the portal to create and manage support cases.

NOTE You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone
The support portal also lists telephone numbers for voice contact. (KB0013367)

Email Support
You can also contact technical support by email at technical.support@gemalto.com.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 11

https://supportportal.gemalto.com/csm
https://supportportal.gemalto.com/csm
https://supportportal.gemalto.com/
https://supportportal.gemalto.com/csm?id=kb_article_view&sys_kb_id=42fb71b4db1be200fe0aff3dbf96199f&sysparm_article=KB0013367
mailto:technical.support@gemalto.com

CHAPTER 1: Setup

FM developers should ensure that their development environment is configured correctly and that all required
files and library locations are set. This section is provided as a guideline for setting up the development
environment so that required files can be accessed during the FM compile and link routines.

Environment Variables
In order to be able to use the build scripts, the following environment variables are used:

FMSDK Specifies the installed location of the SafeNet Luna FM SDK Package if it is
not installed in the default location.

Software Installation
Refer to the installation guide for hardware and software installation instructions. See "SafeNet Luna HSM
Client Software Installation" on page 1.
Install all device drivers and SafeNet Luna HSM Client software.

If the server is to be used for FM creation then you need to install these:

> eldk-5.6.fm package

> SafeNet Luna FM SDK Package

All servers need to also install:

> Luna FM Tools package

Requirements
The SafeNet Luna FM SDK Package provides the tools and sources to allow a developer to create and sign a
FM and to load that FM into a compliant HSM.

Creating an FM:
A Linux operating system is required to perform the FM build.

For a list of supported platforms see the Customer Release Notes at the Gemalto Support Portal.

Signing an FM:
To sign a FM you can usemkfm. This tool requires a PKCS#11 implementation capable of 2048 bit CKM_
SHA512_RSA_PKCS signature operation. Any Luna HSM would be suitable for this purpose. However, a smart
card or other type of HSM would suffice.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 12

https://supportportal.gemalto.com/

Chapter 1: Setup

Compliant HSM:
You can use the SafeNet Luna FM SDK Package to develop FMs for the SafeNet HSMs that were introduced in
release 7.4. A SafeNet Luna Network HSM or PCIe HSM with capability to host FM is required.

Before any FM can be loaded the HSM must have the FM capability configured. The ctfm utility will report if the
HSM is not configured for FMs.

See the "Configure the SafeNet Luna PCIe HSM for Your Network" on page 1 documentation for more details
on how to manage the HSM configuration.

HSM Recovery:
If an HSM becomes unresponsive due to a malformed or buggy FM being loaded, then the HSM needs to be
restored by erasing the FM.

For Luna Network HSMs, see command "hsm fm recover" on page 1with the -erase option, for more
information about restoring HSMs.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 13

CHAPTER 2: FM Architecture

FM Support within the HSMHardware
FMs allow application developers to design security sensitive program code that can be loaded into the HSM
and operate as part of the HSM firmware. The SafeNet Luna FM SDK Package also provides application
developers with APIs to develop applications on a host to interface to the HSM.

The FM may contain custom-designed functions that are in addition to the native command set of the HSM.

The following diagram shows the various components of the FM system, relevant to the host and HSM.

The figure marks the boundaries of the host system and the adapter in order to clarify where each component
resides. The boxes represent components and the arrows represent the interaction or data flow between the
components. Only the message request path is shown in the diagrams, as this method allows illustration of
which component originates the interaction. The message response follows the same path but in the opposite
direction and is not shown on the diagram. The names given to these interfaces are directly, or indirectly
related to the libraries provided in the SafeNet Luna FM SDK Package.

The notation adopted to identify the data flows utilized in the diagram is
API (Function Type)

API refers to the API used to interface between the two components and function type indicates the type of
function.

Amore detailed discussion detailing the components and their interactions follows the diagram.

Custom Functions
The following figure details the components contained in the Host system and the HSM when using custom
functions. The custom application is executed on the host system. A user defined protocol specifying the
message response and request packages for each function must be defined by the application developer. This
protocol is used to access the FM’s custom functions. The host requests are transparently communicated
directly to the FM module, which is then responsible for implementing the protocol.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 14

Chapter 2: FM Architecture

Figure 1: The components and interfaces in a system using Functionality Modules for Custom
Functions
These message response and request packages are transferred between the application and the Access
Provider (ethsm library), via the Message Dispatch API.

In the HSM, the message request/response is processed via modules collectively referred to here as the
Message Processing Modules. Any message request/response which contains a custom function is passed to
the FM for processing. The custom function can access the native PKCS#11 function calls plus the extra
commands specified in this document.

FM Support in EmulationMode
At this stage no emulation mode is supported.

Multiple FMs
The SafeNet Luna HSMs can support more than one FM loaded at the same time.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 15

Chapter 2: FM Architecture

Concept
A developer will use more than one FM because each FM is implementing a different solution and operates
with different applications.

Features
The total number of FMs that the HSM can hold depends on the storage limits. Each FM image is placed in a
reserved area of persistent memory which has a fixed size. So the HSM can only hold as many FM images as
will fit in this space. The current size of the FM store is 8 megabytes.

Each FM loaded into a HSM must have a unique ID number. The FM ID is an integer value that is set in the FM
image through the use of the DEFINE_FM_HEADERmacro.

The FMs behaviour is dependent on multiple factors:

> If a new FM is loaded with the same ID value as a FM already loaded then the new FM will replace the
existing FM.

> If a new FM is loaded with a ID value different to any FM already loaded then the new FM is stored and all
existing FMs are untouched.

The order in which the FM images are initialized is set by the FM ID values. The HSM will call the Startup() in
the FMs starting with the lowest FM ID value and finishing with the highest ID number.

Memory for FMs
The Luna HSM provides the FM developer with several memory types to use.

- Fixed Read Only memory including executable – 8 MB

- SMFS persistent tamper protected memory – 4 MB

- Partition storage using Cryptoki function to manage objects on a partition

- RAM available with malloc() – about 100 MB

Message Handling
Custom commands are always directed to a particular FM identified by the unique FM ID.

TheMD_SendReceive function on the host allows the caller to specify the HSM index and the FM ID values.
The host side software and HSM FWwill ensure that the message is sent to the correct FM

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 16

Chapter 3: FM Development

CHAPTER 3: FM Development

The following chapter describes the recommended development cycle to be undertaken when developing
custom functionality modules. The recommended development lifecycle contains the following stages:

> "Initial Development" on the next page

> "Adapter Build" on the next page

> "Adapter Test" on the next page

> "Production Build" on the next page

> "Acceptance Test" on the next page

> "KeyManagement" on page 19

NOTE File paths in the examples in this chapter are Linux specific, as development of FMs is
done on Linux, only, for this release. Development of host-side FM applications (that call an
FM on your HSM) can be done on Windows, as well as Linux.

Lifecycle Overview
The following diagram illustrates the recommended development cycle to be undertaken when developing
functionality modules.

Figure 2: Figure 1 – FM Development Lifecycle
The development process consists of the following stages:

Initial Development:

Includes the design and development of the functionality application code for initial testing.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 17

Chapter 3: FM Development

Adapter Build:

The functionality module should now be built for the HSM environment. The FM is loaded onto the HSM
hardware and again tested to ensure that operation is as expected.

Production Build:

The final process during the development lifecycle will be to produce and release the functionality module for
the operational environment it was intended.

Initial Development
This phase is the start of the development phase from the specification of the requirements to the completion
of the design. Programming the FM, and the host side libraries and or application can also be considered part
of this stage. It is assumed that at this stage the test procedures are also developed.

Adapter Build
The FM must be tested in the HSM.

In this phase, the developer generates the binary FM image in DEBUGmode, and signs it using either a
temporary or a permanent development key. Once the image is signed, it can be loaded to the HSM for the
next stage of testing. Refer to the "FMArchitecture" on page 14 for further details.

Adapter Test
In the HSM test stage, the debug build of the FM is tested in its production environment.

NOTE If problems are detected during this stage, the developer should use trace messages
from the FM to resolve the problem.

Production Build
When the implementation of the FM and the host-side code is correct, a production build of the system is
performed. Refer to the "FMArchitecture" on page 14 for further details.
In this stage, the developer generates the FM binary image, and the responsible person signs it using the
production private key.

Acceptance Test
When the production binaries are available, the acceptance tests are performed on the final system before the
binaries are released.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 18

Chapter 3: FM Development

Key Management
All FM images loaded into the HSM must have an assigned signature. FMs are executed inside the HSM only
after this signature has been validated. The management of the keys used to sign/verify the firmware is
completely controlled by the developers of the FM. SafeNet does not have any responsibility for the FM key
management scheme.

The certificate that is used to validate the FM binary image must exist in the Admin Token of the HSM on which
the FM is to be installed. If the certificate does not already exist in the Admin Token, the Admin Token
Administrator will be required to install the certificate in the Admin Token. The verification and loading of the FM
requires the HSM Administrator to provide the Admin Token password, enforcing the presence of the HSM
Administrator during the loading operation.

As previously advised, there is no pre-defined key management scheme for the private key and the certificate.
One of the first things to be performed by the FM developer is to decide on the key management scheme to be
used in the system.

Example Key-Management Scheme
This section outlines a sample approach to a key management scheme, which can be customized and
extended.

It is recommended that the key used to sign the FM in the Adapter Build phase is not the same as the key used
to sign it in the Production build phase. This would ensure that a FM in the Adapter Build or Adapter Testing
phase cannot be used by end-users or customers. Additionally, the usage of a production-level FM signing key
needs stricter access control requirements compared to the development signing keys. Using this key to sign
FM images in Adapter Build phase would therefore make the task of development more difficult.

The easiest key management scheme for development keys is to generate a new self-signed key/certificate
pair in the Admin token of the target HSM. This can be done using the SafeNet CMU tool.

There should be a production grade HSM to hold the production key/certificate pair.

The raw FM binary image must be signed using the private key generated, as discussed previously. This can
be achieved using themkfm utility. The signed FM image can then be loaded into the HSM using the ctfm
utility.

Contents of the Luna FM SDK package directory
When installed, the SafeNet Luna FM SDK Package directory (/usr/safenet/lunafmsdk Directory [Linux] or
C:\Program Files\SafeNet\LunaClient\samples\fmsdk Directory [Windows]) contains the following:

Directory File Description

include/ Header files specific to FM and FM Host Application development.
These are used together with headers provided by SafeNet HSM SDK.

lib/libfmsupt.a Static libraries used for building an FM that will run in an HSM.

samples/ Sample FMs and FM Host Applications

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 19

Chapter 3: FM Development

Directory File Description

samples/fmconfig.mk Common configurationmakefile that sets upmakefile and toolchain
variables and rules required for building an FM. This should be included
at the top of any FM's makefile.

NOTE Samples for Functionality Modules rely on the ELDK library that is installed only for
Linux. The host samples work for both Linux and Windows.

SDK Installation Tips

Set the Environment
The tools are all located in the /usr/safenet/lunaclient/bin folder so it will be convenient to add this folder to
the PATH. For example:

export PATH=$PATH:/usr/safenet/lunaclient/bin
The libraries to support the tools are all located in the /usr/safenet/lunaclient/lib folder.
The Luna tools will use /etc/Chrystoki.conf to obtain the location of the libraries they need. However, the FM
Test applications only use the standard system library search methods. As a result, when running FM Test
applications it is convenient to add the lunaclient lib folder to the LD_LIBRARY_PATH. e.g.:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/safenet/lunaclient/lib

NOTE For Windows environments, set a search path to the libraries.
Example: for a default installation, set:
PATH=C:\Program Files\SafeNet\LunaClient\
and
LD_LIBRARY_PATH=C:\Program Files\SafeNet\LunaClient\
Adjust your path statement if you selected a non-default install path during SafeNet Luna
HSM Client software installation.

Protecting Data Storage of FM
When the FM is used to extend the HSM functionality, usually there would be data that needs to be protected
by the HSM. Normally, this data would be stored as a Cryptoki Key Object in one of the tokens. Protecting the
contents of these objects poses a problem, because, setting the SENSITIVE attribute on the object would
prevent access to the data from the FM, and leaving it open would allow any PKCS#11 application on the host
side to get the contents of the data.

There are two possible solutions to this problem:

Using Privilege Level

The CT_SetPrivilegeLevel function allows a simple solution to the problem stated above. The FM can make
a call to temporarily obtain the rights to read sensitive object attributes.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 20

Chapter 3: FM Development

This allows the FM designer to create and manage their keys using the tools provided with the HSM. This
increases security by allowing the user access from the trusted FM, while reducing the risk from external
programs.

Using the SMFS

The Secure Memory File System (SMFS) provides access to key storage area that is exclusively for the use of
FM developers, the FM designer can store keys without these keys being visible through the HSMs Cryptoki
interface.

The format of the keys is entirely up to the FM designer – they need not have attributes as the Cryptoki objects
do.

There is no need to callC_Initialise or open sessions or search for object handles if you use the SMFS to
store your keys.

FMs that store their keys in SMFS need to provide all the functions to generate, store, delete, backup and
restore these keys.

The SMFS system uses a Open read/write Close paradigm.

NOTE Functionality Modules that open an SMFS file and keep the handle open should take
into account the following:
The number of SMFS file handles is a limited resource (approx 16). Therefore FM designers
should not keep SMFS file handles. Instead use SMFS to do backup and restore only. Keep
the keys in normal memory while the FM is running. Restore the keys fom SMFS during the
FM initialization by opening/reading and closing theSMFS file. When changes are made to the
keys then open/write/close the SMFS file to backup the changes.
Similar to the way a Luna partition cannot be used by an application until an operator has
activated it by logging on to it, the SMFS cannot be used until it is Activated. SMFSActivation
occurs when the HSM Security Officer or Administator issues the SMFSActivation command -
"hsm fm smfs activate" on page 1 for Luna Network HSM.
The HSM can be configured to automatically Activate on each startup by setting the
appropriate Security Policy. Other Security Policy flags effect the behavior of FM – please
refer to the section on Capabilities and Policies in the Administration Guide.
Because the HSM does not pass control to any FMs until after the SMFS is activated the FM
designer can assume that the SMFS is always Activated.

Scatter Gather FMMessage Dispatching
FM Message dispatching (from client to HSM) support allows for more than one request buffer, and more than
one reply buffer to be presented to the HSM in one command. The message dispatch layer provides scatter-
gather support to combine all the request buffers into a single data buffer, and send it to the HSM. The reply
data is treated the same way, but in the reverse direction - the data is scattered into multiple reply buffers. This
feature can be very useful when information to be sent to the HSM and the information received from the HSM
are kept in different variables or buffers.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 21

Chapter 3: FM Development

The scatter-gather operation on the reply buffers can behave in an unintuitive manner when the initial buffers
are variable length. The device driver will start filling the host side initial buffers with the reply data and it will not
place any data into subsequent buffers until the current one is completely filled. The effect of this is that the
reply buffer fields may not contain the expected values when the amount of data placed in a variable length
buffer is less than the maximum length of the buffer.

For example, if two reply buffers of 40 bytes each are passed to the message dispatch layer, but the actual
data to be returned in each buffer is only 32 bytes, then the first 40 byte buffer will be filled with 32 bytes of data
meant for the first buffer, and 8 bytes of data meant for the second buffer. The second reply buffer of 40 bytes
will only contain 26 bytes of data.

This behaviour is handled via two possible cases:

> After receiving the reply, re-align the data in the buffers. The order of re-alignment must be from the last
buffer to the first. In order to be able to implement this, the reply data, in its entirety, must contain enough
information to determine the length of each reply block.

> Always merge the reply buffers to a single block before dispatching the request, by allocating another block,
and moving data from the allocated buffer to the caller’s reply buffers. This approach makes the code more
reliable.

Handling Host Processes IDs
The SafeNet Luna FM SDK Package allows a FM developer to determine the identity of processes sending
messages to the HSM.

The functions FM_GetCurrentAppId, and FM_SetCurrentAppId allow you to know what process is sending
the current message.

If your FM supports the concept of a user login then you will need to track which host processes have logged in.

You can remember which process has logged in by storing the AppId as the process successfully
authenticates. When a process sends a message that requires authentication you can check to see if the
process is the list of authenticated processes.

The Cryptoki system always uses the AppId to determine if a session handle or object handle is valid for the
calling process.

Therefore if the FM makes Cryptoki calls while processing a request by using a session handle obtained earlier
from a different request then there is a possibility that the Cryptoki call with fail with CKR_CRYPTOKI_NOT_
INITIALIZES error.

This is because process A calls the FM which then callsC_Initialize and opens a Cryptoki session. Then later
process B calls the FM and the FM tries to use the session handle. The Cryptoki will not recognise process B.
To overcome this problem you may want to modify the AppId to a constant value that the underlying Cryptoki
sees by using the FM_SetCurrentAppId calls prior to making any Cryptoki calls.

NOTE The value –1 for AppId is a suitable choice for this purpose.

C_CloseAllSessions - Notes
Special consideration should be made of the C_CloseAllSesions function call.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 22

Chapter 3: FM Development

Because the FM and the calling process share the same AppID (see previous section) then HSM considers any
session opened using C_OpenSession() by either the Host side application or the FM (on behalf of the calling
process), to be owned by the same Application.

So if either the FM or the Application calls C_CloseAllSessions then all sessions owned by that AppId are
closed.

An example illustrates this:-

> The Application opens a session and gets session handle 1.

> The Application calls the FM and the FM opens a session it gets session 2.

> The HSM now thinks this application owns two sessions.

> If either the Application or the FM calls C_CloseAllSession then both sessions will be closed.

A well designed solution will clean up its own sessions with C_CloseSession() and avoid the use of C_
CloseAllSessions().

Memory Alignment Issues
The PowerPC processor in the SafeNet Luna PCIe HSM does not require fully aligned memory access,
however unaligned access incurs a performance cost.

Memory Endian Issues
The processor in the SafeNet Luna PCIe HSM is big endian, where the processors in PTK based PSIe and PSG
are little endian.

It is recommended that FM developers use the provided endian macros to encode all messages in network
byte order. By using the endian macros on both host and FM, endian differences between host and HSM are
not an issue.

The utility endian macros, such as fm_htobe16, are provided in the header file fm_byteorder.h.

Compiling FMs
The sample FMs provided in the SafeNet Luna FM SDK Package include makefiles to script the compiling and
linking of the sample FMs. These makefiles are written to be compatible with the GNUmake utility.

When you write your own FM you can start by copying one of the sample FMs. You can remove the
unnecessary code and substitute in new code on an as-needed basis. The FM makefile will also need to be
modified to match the set of source files for the new FM.

The compiler is available at this location:

/opt/eldk-5.6/powerpc-4xx/sysroots/i686-eldk-linux/usr/bin/powerpc-linux/powerpw-linux-gcc
However, if you do not want to use the GNUmake utility, the following sections will give basic instructions on
what actions are required for compiling and linking FMs.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 23

Chapter 3: FM Development

Include Path
The -I option is required to tell the compiler where to get the SafeNet Luna FM SDK Package header files.

To build a Luna FM

Use these folders in the following order:

1. /usr/safenet/lunaclient/include
2. /usr/safenet/lunafmsdk/include
3. /usr/safenet/lunafmsdk/include/fm/hsm
4. /usr/safenet/lunafmsdk/include/fm/host

PPO Compatibility INCLUDE Files
FMs written for the PPO SDKwill have specific SafeNet ProtectToolkit (PTK) specific identifiers which are not
part of the SafeNet Luna FM SDK Package. The SafeNet Luna FM SDK Package includes compatibility
headers which will ease the porting of PPO source to a Luna FM environment.

To build a Luna FM from PPO FM source

Use these folders in the following order:

1. /usr/safenet/lunaclient/include
2. /usr/safenet/lunafmsdk/include
3. /usr/safenet/lunafmsdk/include/fm/ppo-compat
4. /usr/safenet/lunafmsdk/include/fm/ptk-compat

DEFINES
These are the minimum –D Flags required when compiling a FM with Eldk.
OS_LINUX - needed by cryptoki header files (cryptoki_v2.h)
_GNU_SOURCE -- required to specify correct c runtime lib support
DISABLE_CA_EXT -- tell cryptoki_v2.h not to include Luna Extension header (not used in FM)
IS_BIG_ENDIAN -- defines the hsm endian is big - only required if using PPO compat headers
DEFINES += -DOS_LINUX -DIS_BIG_ENDIAN -D_GNU_SOURCE -DDISABLE_CA_EXT

C_Flags
The following are the minimum C FLags required when compiling a FM:
-fPIC -ffreestanding -std=c99

L_Flags
The FM is linked as a shared object which exports some symbols but imports none (including the standard C
runtime library).

Only two libraries are required to link the FM: the libfmsupt.a static library from SafeNet Luna FM SDK Package
and the libgcc.a from /opt/eldk-5.6. As a result, these linkage flags must be passed to the GNU compiler.
L_FLAGS = -shared -zdefs -nostdlib -WI, -static -WI, --gc -sections -L /usr/safenet/lunafmsdk/lib
-lfmsupt -lgcc

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 24

Chapter 3: FM Development

Building Applications that Talk to FMs
The Sample FMs provided in the FM SDK include makefiles to script the compiling and linking of the test
applications that communicate with the sample FMs.

These makefiles are written to be compatible with the GNUmake utility on Linux.

When you write your applications to communicate with your own FM you can start the design by copying one of
the sample FMs test application source and strip out the code not needed and add new code as appropriate.

The host/makefile will also need to be modified to match the set of source files of the new FM.

However, if you do not want to use the GNUmake utility the the following sections will give basic instructions on
what options are required for compiling and linking applications to communicate to FMs.

INCLUDE PATH
The -I option is required to tell the compiler where to get the Luna Cryptoki and MD API header files.

To build a Luna FM Application

Include this folder:

> /usr/safenet/lunafmsdk/include

PPO Compatibity INCLUDE Files
Applications written for PTK and/or the PPO SDKwill reference specific identifiers which are not part of the
SafeNet Luna FM SDK Package. The SafeNet Luna FM SDK Package includes compatibility headers which will
ease the porting of PPO/PTK source to the Luna FM SDK environment.

To build an application from PPO/PTK source

Use these folders in the following order:

1. /usr/safenet/lunafmsdk/include/fm/ppo-compat
2. /usr/safenet/lunafmsdk/include/fm/ptk-compat
3. /usr/safenet/lunaclient/include
4. <other_folders>

L_FLAGS
There are two libraries which give an application access to the HSM:

> /usr/safenet/lunaclient/lib/libCryptoki_64.so

> /usr/safenet/lunaclient/lib/libethsm.so

You can design the application to load the shared libraries at runtime or load time.

Runtime
Use the dlopen() and dlsym() to load libCryptoki2_64.so and/or libethsm.so and fetch entry points as
required.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 25

Chapter 3: FM Development

The path to the libraries can be controlled by configuration implemented in the application.

Load Time
Link the application against the shared libraries when linking the application.

When running the application you need to use the LD_LIBRARY_PATH environment variable to point to
/usr/safenet/lunaclient/lib or use that -rpath option to tell the application where to find the libraries.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 26

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

CHAPTER 4: Comparing PTK to Luna FM
SDK, and Porting FMs

This chapter describes how to compare the Luna FM SDK and PTK FM SDK to determine what solution is best
for your application and how you would port a PTK FM to Luna.

The actual differences between the FM SDK products will change as new versions of the respective products
are released.

In this chapter we compare :

Luna FM SDK 7.4

PTK PPO 5.7

FM source code designed for the PTKPPO SDKwill need to be changed before it can be successfully compiled
and linked with the Luna FM SDK.

The Luna FM SDK has an overlapping feature set with the PPO feature set.

There are functions available in Luna FM SDK but not in PPO and vice-versa.

The amount of effort to convert your FM source from PPO to Luna FM SDKwill depend on which features your
FM uses.

The following sections describe these differences.

Summary
This section summarizes the features that differ between PTK and Luna FM SDK and some suggestions on
how to migrate FM code that uses them.

Feature Overview Details

HSMManagement and
Security Features

Luna has optional PED based user
authentication and tool set is different.

Programming APIs Luna has new FMCE Api and limited CipherObj
support, Cryptoki object andmechanism lists
differ.

See "FMCE API and CipherObj
" on page 30

Software Emulation Only PTK has an emulation for FM development

Cryptoki function Patching Only the PTK can allow the FM to intercept and
replace PKCS#11 function calls.

See "PTK Function Patching" on
page 32

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 27

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

Feature Overview Details

Smart card key backup Luna 7.4 supports Cloning only to another FM
Enabled HSM as a backup scheme.
PTK can use smartcard as a PKCS#11 slot for
data storage

NoG5 backup supported for either
Luna or PTK.

Net server support for allow
network access to a PCI
HSM

Luna has no equivalent

Enter keys from
components by keyboard +
Verifone PinPad

Keyboard entry on Luna is possible with special
tool

No pinpad support on Luna unless
an FM implements that support
itself.

HSMManagement and Security Features
Here is a description of roles and services, key management policy and authentication techniques for each
HSM.

Configuration
The PTKHSM may be ordered with different performance levels but otherwise all configuration is done by the
Administrator setting security policy flags.

The Luna HSM may be ordered with different Capabilities for performance, key extraction policy, maximum
user tokens and, in addition, the Security Officer can change Security Policy settings.

Please refer to the Administration Guide for more details and consider the Capabilities when ordering new
Luna HSMs.

Roles

HSM Administration Partition User Partition

PTK Admin SO
Administrator
Auditor

Security Officer
User

Luna HSM Security Officer
Administrator
Auditor

Partition Security Officer
Crypto Officer
Crypto User

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 28

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

Authentication and Activation

Luna
Luna HSMs employ a model wherein all material on the HSM remains encrypted except when items are
temporarily decrypted into volatile HSM memory for use. Thus any power loss or tamper event causes
decrypted material to evaporate, with no overt action needed. Luna requires authentication to each partition
before any cryptographic operation can be performed on that partition.

For a password-authenticated partition, that authentication is done by means of a password (something you
know), so the FM can provide that password during C_Login.

If the Luna HSM is PED-authenticated, then authentication is layered or multi-factor, requiring authentication
with a physical token (something you have) before authentication with a challenge password (something you
know), that can be provided by the FM during C_Login.

The first layer is called Activation and requires that the relevant PED Key(s) be presented via the PED. A PED-
authenticated HSM or partition requires appropriate PED Keys for each of the HSM Security Officer,
Administrator, Partition Security Officer, and Crypto Officer and Crypto User Roles.

For convenience of operation, Activation remains in force until interrupted or until logout is performed.
Activation can be made persistent by enabling Auto-activation, which allows Activation to automatically
reassert following interruptions or outages up to two hours in duration.

So your FM will not be able to access any keys on a Cryptoki partition until that partition is activated, but as long
as the partition remains activated, the process of authentication by the FM is identical to the authentication
process on a password-authenticated partition.

Activation occurs manually when a user is authenticated to the Token (logs in), or Automatically if Auto-
Activation Policy is enabled.

In addition to the requirement for a physical token to place the partition in a state receptive to password login,
some very high-security regimes can choose to employ additional factors for authentication:

> The PED Keys can optionally be initialized with MofN split, or shared, secret (also called quorum), thus
requiring that more than one trusted person must be present, with their portion of the split secret, in order to
perform that operation. So, for example, if the HSM SO secret was initialized as M=2 and N=5, then 5
people would each be given a blue PED Key containing a 1/5 portion of the secret, and 2 of those people
(any two) would be needed whenever the HSM SO wanted to log in.

> Each PED Key can optionally be assigned a multi-digit PED PIN that must be entered on the PED keypad
when that PED Key is presented. A PED PIN is an optional (until invoked) PED function, and is completely
unrelated to the challenge password that is presented by applications and FMs.

PTK
PTK requires no Activation – it uses a Tamper Response model – so keys are always available unless the HSM
has detected a Tamper event.

PTK can optionally require an OTP Token for Administrator and/or User Roles.

Both HSMs require a user to login before they can access private keys.

The FM can login with C_Login on PTKHSMs to access Private Objects in a partition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 29

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

What Does It Mean?
If your Luna partition uses a PED then your client application needs to log in before calling FM functions. Once
the SO has activated the partition with the appropriate PED Key, authentication process is the same as for a
password authenticated partition.

If your Luna partition uses passwords then you can perform login from the client or the FM.

Tool Set
The PTK and Luna have these tools :

PTK Tool Luna Tool

Hsmreset Lunash hsm reset
lunareset /dev/k7kp0

Hsmstate Lunacm, lush

Ctconf Lunash, lunacm

Ctkmu CMU, ckdemo

Ctcert CMU

Ctstat Lunash, lunacm

Ctcheck Lunash,lunacm

Graphical KMU -

Windows ctbrowse -

gctAdmin -

- Salogin

Per Partition SO introduced by Admin
PTKRequires Administrator role to create user partitions/Tokens, while Luna uses the Security Officer Role.

PTK in FIPSmode requires Administrator role to allow a user partition to be initialized with Partition SO (Admin
introduces SO) but Luna never requires an SO for this.

FM Programming APIs

FMCEAPI and CipherObj
Luna has new FMCEAPI to provide raw key cryptography similar to the CipherObj model used in PTK.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 30

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

The Luna FM SDK also has a limited CipherObj support to halp with porting – refer to Luna FM SDKUser Guide
for a complete list.

The actual list of mechanism supported in FMCE, CipherObjs and Cryptoki interface overlap but differ between
the HSMs. Refer to Luna and PTKUser documentation for complete lists.

Public Key CertificateManagement
PTK supports CSR and Public Key Certificate creation in firmware using extension mechanisms so these
capabilities are available to PTK FMs.

Luna performs these operations in the client side CMU tool and so the FM has no access to these operations
and must provide any implementations itself.

Cryptoki Attributes
The PTKCryptoki provides extension attributes which are not in the Luna Cryptoki.

> CKA_ISSUER_STR

> CKA_SUBJECT_STR

> CKA_SERIAL_NUMBER_INT

> CKA_SERIAL_NUMBER_STR

> CKA_ENUM_ATTRIBUTE

> CKA_EXPORT

> CKA_EXPORTABLE

> CKA_IMPORT

> CKA_KEY_SIZE

> CKA_TIME_STAMP

> CKA_TRUSTED

Client and FM Extension Functions
These functions are not supported. There is no workaround.

> CT_InitToken()

> CT_ResetToken()

> CT_CopyObject

> CKM_DECODE_PKCS7

> FM_SetAppUserData

> FM_SetTokenUserData

> FM_SetTokenAppUserData

> FM_SetSlotUserData

> CT_PresentTicket

These functions are not supported but there is a workaround.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 31

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

> FM_GetCurrentOid() and FM_GetCurrentPid()

> Use FM_GetCurrentAppId()

JHSM
PTK has JHSM, a Java interface for custom command dispatch i.e. Java version of MD_SendReceive(),

The PTK version should work with the Luna ethsm library.

Compatibility Header Files
In addition to the normal Luna FM SDK header set there are compat headers (detailed in the FM SDKUser
Guide).

These headers emulate PTKmanifest constants and functions using the normal Luna headers. They are
provided to ease PTK FM porting to Luna.

PTK Function Patching

OS_GetCprovFuncTable()
This function is not implemented in the Luna HSM.

Because this feature is missing it is not possible to patch/intercept Cryptoki calls to the HSM.

The reason is that SafeNet Luna HSM Client functions are not equivalent to Cryptoki requests; they make up a
custom protocol called PcProt.

PTK FMs developers had two reasons to patch the cryptoki table.

> Since all administration of the PTKHSM is done with Cryptoki calls the management of the HSM could be
modified.

> Custom Mechanisms could be implemented.

Administration Patching
If the Cryptoki function patching is intended to enforce a new security policy (for example, controlling the slot on
which an application can open a session on) then this type of FM capability cannot be ported to Luna FM SDK.

Read Only Tokens Solution
If the requirement is to have keys in a user slot visible to the Client but is otherwise Read-only, then the
following solution can be used:

> Set Usage and extraction Attributes of all key objects to false

> Login the client application as Crypto User Role and pass object handles to the FM using Custom functions.

> The FM can use CT_SetPrivilageLevel to achieve Crypto Officer access to the keys/partition.

Custom Mechanisms
If the Cryptoki patching is used to implement a custom mechanism then you can use the following workaround.

Implement a custom request to the FM to replicate the functionality of the patched Cryptoki function call.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 32

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

Several issues arise when designing a custom function to replace a Cryptoki call:

> Object handles: these must be passed to the Custom function. Users should assume they can be
encoded as 32 bit Integers.

> Slot Numbers: slot numbers seen by the application must be converted to the equivalent embedded
Cryptoki slot number using MD_GetEmbeddedSlotID() and associated HSM index number with MD_
GetHsmIndexForSlot().

> Session Handles: session handles provided by the host side Cryptoki library to the application cannot be
used by the FM because they will not be recognized by the Embedded Cryptoki library used by the FM.

Therefore the FM must open its own Cryptoki sessions.
Depending on the system architecture the developer can either:

• For multi-part commands: Implement a custom command to open a session and return the handle to the
application where it can be passed in with each subsequent call or

• For Single Part Commands: find slot number of the Application session (use C_GetSessionInfo) and
translate it to the matching embedded slot MD_GetEmbeddedSlotID() then send that slot number to with
your custom command request. The FM can use that slot number to temporarily open a session locally
to do the single part command.

> Object Attributes: the implementer needs to encode/decode any object attributes that will be passed in or
out as part of the Custom command

Porting ProtectServer FMs

FM source code designed for the legacy ProtectServer FM SDKwill need to be converted to be successfully
compiled and linked with the SafeNet Luna FM SDK Package.

The amount of effort to convert your FM source from PPO to SafeNet Luna FM SDK Package will depend on
which features your FM uses.

A large number of PPO features are provided by SafeNet Luna FM SDK Package either directly or through the
compatibility headers.

The following section lists features missing from SafeNet Luna FM SDK Package and provides some
suggestions on how to migrate the FM code that uses them.

See "Compiling FMs" on page 23 for more information on converting legacy PTK FMs for use with the SafeNet
Luna FM SDK Package.

FM_GetCurrentOid() and FM_GetCurrentPid()
See "FM_GetCurrentAppId" on page 140

FM_SetAppUserData, FM_SetTokenUserData, FM_SetTokenAppUserData, FM_
SetSlotUserData
These functions are not supported. There is currently no workaround.

OS_GetCprovFuncTable()
This is the largest change. As a result of this feature missing, it is not possible to patch Cryptoki calls to the
HSM.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 33

Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs

If the Cryptoki function patching is intended to enforce a new security policy (i.e controlling what slot an
application can open a session on) then this feature cannot be ported to SafeNet Luna FM SDK Package.

However, if the patching is used to implement a custom mechanism, then the work around is to implement a
custom request to the FM to replicate the functionality of the patched Cryptoki function call.

There are several issues which arise when designing a custom function to replace a Cryptoki call:

Object Handles These need to be passed to the Custom function. Users should assume they can be encoded as
32 bit integers.

Slot Numbers Slot numbers seen by the applicationmust be converted to the equivalent embedded Cryptoki
slot number usingMD_Get_EmbeddedSlotID() and the associated HSM index number with
MD_GetHsmIndexForSlot().

Session Handles Session handles provided by the host side Cryptoki library to the application cannot be used by
the FM because they will not be recognisable by the embedded Cryptoki library. The FMmust
open its ownCryptoki sessions tomake Cryptoki calls that need a session handle. Depending
on the system architecture the developer can:
> Formulti-part commands: implement a custom command to open a session and return the

handle to the application where it can be passed in with each subsequent call.
> For single part commands: find the slot number of the Application session (useC_

GetSessionInfo) and translate it to thematching embedded slotMD_GetEmbeddedSlotId()
then send that slot number to the HSMwith your custom command request. The FM can use
that slot number to temporarily open a session locally due to the single part command.

Object Attributes The implementer needs to encode/decode any object attributes that will be passed in or out of
the custom command.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 34

Chapter 5: FM Samples

CHAPTER 5: FM Samples

There are three sample FMs provided with the SafeNet Luna FM SDK Package:

> "Sample: skeleton" on page 37

> "Sample: pinenc:" on page 38

> "Sample: wrap-comp:" on page 41

NOTE Sample FMs are distributed with the SafeNet Luna FM SDK Package. They have a
similar file layout.

Each of the FM samples is structured in a similar way. Each sample directory contains:

makefile makefile to build host and HSM side code

fm directory holding HSM side source

host directory holding host (server) side source

include optional directory to hold common header files

Within the FM directory are files like these:

hdr.c header file for the production build of the FM binary image

sample.c HSM side; main source for FM

makefile Makefile to build the FM and the application

Within the host directory are files like this:

stub_sample.c host side stub (request encoder/decoder) (needed only for custom API)

sample.c main source for host side test application

makefile Makefile to build the host side application for emulation, or production

The samples are built using gnu make and the provided Makefiles. When working on a platform that has a
native gnu make, such as Linux, you can use the system make command. (For Windows, consider nmake.)
> Production build, no debug information in binaries:

make
> Production build, with debug information in binaries and optimization turned off:

make DEBUG=1

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 35

Chapter 5: FM Samples

Binary files generated by the above variants are placed in different directories. The directory names used are:

obj-ppc FMObject files

bin-ppc FM Binary (FM image)

Host Binary files generated by the above variants are placed in different directories. The directory names used
are:

output/obj Host side test application Object files

output/bin Host side test application executable

The binaries generated from each variant can be deleted using the target ‘clean’.

make DEBUG=1 clean

Signing FM Images
The build scripts generate the unsigned FM binary image when the HSM builds are performed. The binary
images are named ‘<samplename>.bin’. Since these images are not signed yet, it is not possible to load them
into the HSM. To use the key management scheme (using self-signed FM certificates), follow the steps listed
below:

1. Generate the key pair on the Admin token. Execute:

cmu generatekeypair -slot <adminslot> -password <userpin> -label <fmsign> -keytype <rsa> -sign
<true> -verify <true> -modulusbits <2048>
This will generate a 2048 bit RSA key pair. The minimum key size for FM signing should be 2048 bits.

2. To obtain the handles of the new key objects. Execute:

cmu list -slot <adminslot> -password <userpin> -handle -class -label <fmsign>
3. To make a self signed certificate, execute:

cmu selfsigncertificate -slot <adminslot> -password <userpin> -publichandle <pubkeyhd1> -
privatehandle <prikeyhd1> -label <fmcert> -cn <fmcert>

4. Now, the binary image can be signed using mkfm. In the directory where the binary image is generated,
execute:

mkfm -k SLOTID=<adminslot>/<fmsign> -f<sampleN.bin> -osampleN.fm
where “<adminslot>” is the slot id where the signing key is located and <fmsign> is the label of the private
signing key that was previously generated and <sampleN> is the binary image of the sample FM being
signed. This will generate a signed FM binary image, named “sampleN.fm”. This command requires the
user password of the HSM partition to be entered.

5. Exit from all cryptoki applications that are still active, and load the FM image into the HSM.

 For SafeNet Luna PCIe HSM
Execute this command:

ctfm i -p <password> -k SLOTID=<adminslot>/<fmcert> -f <sampleN.fm>

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 36

Chapter 5: FM Samples

where <fmcert> is the name of the certificate in Admin Token used to verify the FM binary image integrity.

The load operation can be checked by executing the command:

ctfm q
and ensuring that the FM name is correct, and the FM status is “Loaded”.

 For SafeNet Luna Network HSM
Log in via Luna Shell, with hsm login and execute:
hsm fm load -certFile <filename> -fmFile <filename>
The load operation can be checked by executing the command:

hsm fm status
6. To enable the newly signed FM you must restart the HSM.

hsm restart

NOTE For Windows environments, set a search path to the libraries.
Example: for a default installation, set:
PATH=C:\Program Files\SafeNet\LunaClient\
and
LD_LIBRARY_PATH=C:\Program Files\SafeNet\LunaClient\
Adjust your path statement if you selected a non-default install path during SafeNet Luna
HSM Client software installation.

Export a Self-Signed Certificate and Copy to Other HSMs
If the target is local, you can sign the If the target HSM is a Network HSM, you must export the self-signed
certificate and bring it to the Network HSM, to allow the HSM to use the FMs you have created.

1. Export the self-signed certificate to a file:
/usr/safenet/lunaclient/bin/cmu export -slot <slot> -password <userpin> -label <fmcert label> -
outputfile=<fmcert.cert>

2. Copy the exported certificate file to the host of the HSM that is to use the FM. If the destination is a SafeNet
Luna Network HSM, use scp or PSCP:
scp <fmcert.cert> admin@<hostname-or-ip-of-appliance>:

Sample: skeleton
This sample FM is very simple and small and can be used as an empty skeleton to start your FM development.

Make a copy of this FM source and modify it for your own needs.

The other sample FMs are large and complex and are intended to illustrate the various programming
techniques used in FM development. You can use them as a reference and copy and paste code fragments
into your own FM but it is unlikely that you would want to start your own FM development by taking a copy of the
pinenc orwrapcomp FMs.
The ‘e’ FM provides a simple message echo service. The message communication method selected is the
random access style. It also opens a session on the Embedded cryptoki to illustrate embedded slot mapping.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 37

Chapter 5: FM Samples

skeleton has code samples for the following functionality:
> Registering a random access message handler

> Parsing request messages and performing integer endian conversions

> Constructing and returning a response message

The FM implements one custom command

There is no need to specify a command code as it is implicit.

Description

The skeleton test application is used to exercise the skeleton sample FM.

skeleton Test Application
skeleton[-h] [-?] -s<slotnum> -t <text>

-s<slotnum> use slot slotnum - (default 1) e.g. -s3

-t<text> text to echo

e.g. skeleton -s6 -t “My message”

To access the slot number and determine if the HSM supports FMs:

1. Launch lunacm and execute the command slot list
slot list

2. Record the slot number for the device.
3. Exit lunacm.
4. For SafeNet Luna PCIe HSM, use ctfm q command to list available FM-capable HSMs.

For SafeNet Luna Network HSM, use hsm fm status command.

Sample: pinenc:
Demonstrates how custom functionality can be implemented. The only use of the external Cryptoki interface is
to login the operator.

The FM provides a simple pin encryption facility. User pins that are encrypted under a RSA public key (perhaps
in a Web Browser) can be sent to the HSM to be re-encrypted under a Symmetric Pin Encryption key.

pinenc has code samples for the following functionality:
> Registering a message handler

> Parsing request messages and switching between different command codes

> Using the internal Cryptoki implementation to get services from the Luna Core.

> Using CT_SetPrivilegeLevel to override Cryptoki rules
> Using FMCEAPI to get raw AES and RSA crypto services

> Using the SMFS to store sensitive keys.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 38

Chapter 5: FM Samples

> Generating Debug trace messages

> Generating Secure Audit entries

> Constructing and returning a response message

The FM implements four custom commands:

PE_CMD_GEN_KEYS:

Description:

Generates an RSA key pair and an AES key and stores them in the SMFS

NOTE The FM opens a cryptoki session inside the HSM and relies on that session having
the same login status as the client process calling the custom command.

Input:

zone, slot_num

Output:

status

Process:
C_OpenSession,
C_GenerateKeyPair(2048 bit RSA key)
CT_SetPrivilegeLevel(1)
C_GetAttributeValue to Read private key attribute
C_Finalize
AES key = FM_GetNDRandom
If cannot open SmFs file then Create SmFs file.
Store RSA and AES key into SmFs file
FM_AddToExt(audit entry)
Return status

PE_CMD_GET_PUBKEY:

Description:

Returns the previously generated RSA public key

Input:

zone

Output:

status, encoded pubkey

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 39

Chapter 5: FM Samples

Process:
If (pub key is not in cache) open and read SmFs file into cache
Encode rsa pubkey for response
Return status, encoded pubkey

PE_CMD_CLR_PIN_ENCRYPT:

Description:

Uses stored RSA public key to encrypt a clear pin block

Input:

zone, clear pinblock

Output:

status, encrypted pinblock

Process:
If (pub key is not in cache) open and read SmFs file into cache
Use FMCE Api to OAEP encrypt the pinblock
Return status, encrypted pinblock

PE_CMD_TRANSLATE_PIN:

Description:

Re-encrypts the pinblock from RSA to AES

Input:

zone, encrypted pinblock

Output:

status, encrypted pinblock

Process:
If (pri key is not in cache) open and read SmFs file into cache
Use FMCE Api and RSA pri to OAEP decrypt the pinblock
Use FMCE Api and AES key to ECB encrypt the pinblock
Return status, encrypted pinblock

pinenc Test Application
pinenctest [-z<zone#>] [-s<slot> –p<pin> gen] | [-d<hsm> test]

-z<key zone number> Use key zone # - (default 1).e.g. -z123

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 40

Chapter 5: FM Samples

-s<slot number> Use slot # - (default 1) e.g. -s3

-d<device number> Use HSM device # - (default 3) e.g. -d3

-p<pin> Use pin to log into slot

gen Perform key generate operation

test Perform pin translate tests (default)

Description:

The pinencetest application is used to exercise the pinenc sample FM. The FM operates in two modes. Either it
is generating a key set or it is using a key set. The pinenctest application allows the user to specify whether to
generate a key set (gen) or to test a key set (test).
When generating a key set, you must determine the Cryptoki slot number on which you want to login and
generate a key set. The Test application requires a Cryptoki token to generate key sets. So when you ask the
FM to generate keys it needs to know which slot number to use. The test mode uses the keys already
generated and requires you to specify only the device number. In order to handle multiple HSM instances you
must specify which HSM is to be used for the test. The device number specifies the HSM instance.

To access the slot number and determine if the HSM supports FMs:

1. Launch lunacm and execute the command slot list
slot list

2. Record the slot number for the device.
3. Exit lunacm.
4. For SafeNet Luna PCIe HSM, use ctfm q command to list available FM-capable HSMs.

For SafeNet Luna Network HSM, use hsm fm status command.

Process:
C_Initialize, Find Admin Token, C_OpenSession, C_Login(Admin Password)
C_GenerateKeyPair(2048 bit RSA key)
CT_SetPrivilegeLevel(1)
C_GetAttributeValue to Read private key attribute
C_Finalize
AES key = FM_GetNDRandom
If cannot open SmFs file then Create SmFs file.
Store RSA and AES key into SmFs file
FM_AddToExt(audit entry)
Return status

Sample: wrap-comp:
Description: This sample demonstrates how to implement an extension to Cryptoki. In this sample a newC_
WrapKeymechanism is defined.

wrap-comp has code samples for the following functionality:

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 41

Chapter 5: FM Samples

> Registering a message handler

> Parsing request messages and switching between different commands codes

> Using the internal Cryptoki implementation to get services from the Luna Core.

> Generating Debug trace messages

> Constructing and returning a response message

The FM implements one command:

WC_CMD_GET_RSA_COMP:

Description:

Extracts a specific attribute from a RSAPrivate key, wrap it with a symmetric key and return the cryptogramme.
The schematics of this function are the same as the CryptokiC_WrapKey command.

Input:

Slot_num, hRSAObj, hDESObj, attribute_type

Output:

status, encrypted Component

Process:
Call C_OpenSession(slot_num)
Verify that hRSAObj is valid handle to a RSA Private key object with CKA_EXTRACTABLE=1
Verify hDESObj is valid handle to a CKK_DES3 with CKA_WRAP=1
CT_SetPrivilegeLevel(1)
Read selected attribute from hRSAPri object
Use hDESKey to CBC encrypt the component
CT_SetPrivilegeLevel(0)
Return status, encrypted component

wrap-comp Test Application
wrapcomptest [-sSlot] [-p<pin>]

-p<pin> Specify CKU_USER pin of slot (used for batchmode).

-s# Use slot # - (default 1) e.g. -s3

Description

The wrapcomptest application is used to exercise the wrapcomp sample FM.

The application logs into the HSM and generates a temporary RSA key pair. It then uses the FM to wrap and
(partially display) each component.

The FM uses Cryptoki operations and requires a slot number.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 42

Chapter 5: FM Samples

To access the slot number and determine if the HSM supports FMs:

1. Launch lunacm and execute the command slot list
slot list

2. Record the slot number for the device.
3. Exit lunacm.
4. For SafeNet Luna PCIe HSM, use ctfm q command to list available FM-capable HSMs.

For SafeNet Luna Network HSM, use hsm fm status command.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 43

Chapter 6: Utilities Reference

CHAPTER 6: Utilities Reference

The section contains information pertaining to the following utilities:

> "cmu " below

> "ctfm" below

> "mkfm" on page 48

> "fmrecover" on page 49

cmu
The CMU utility (Certificate Management Utility) referred to in this manual is provided as a part of the SafeNet
Luna FM SDK Package. Refer to the "CertificateManagement Utility (CMU)" on page 1 for further information.

ctfm
Functionality Module Management utility.

SYNTAX
ctfm d [-a<device> | -A | -s#]-i<fmid> [-p<password> | -e<PED>]
ctfm i [-a<device> | -A | -s#] [–c<certFile>] [-l<certLabel>] -f<fmFile> [-p<password> | -
e<PED>]
ctfm q [-a<device> | -A | -s#]
ctfm v [-a<device> | -A | -s#] [–c<certFile>] -l<certLabel> -f<fmFile> [-p<password> | -
e<PED>]
ctfm a [-a<device> | -A | -s#] [-n] [-p<password> | -e<PED>]

DESCRIPTION

The ctfm utility is designed for the HSM administrator and is used to manage functionality modules on the
HSMs.

NOTE This tool is for use on a computer that hosts a SafeNet Luna PCIe HSM locally. For
SafeNet Luna Network HSMs, use the LunaSH hsm fm commands.

With this tool it is possible to:

> Load a new FM

> Delete an FM

> Query the status of any FMs

> Verify an FM file is correctly signed

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 44

Chapter 6: Utilities Reference

> Activate the SMFS on an HSM.

In each case the operation may apply to all HSMs or an individually specified HSM. By default, ctfm reports the
FM state for all devices found.

The device Security Officer password must be initialized in order for these commands to run. When the
commands are executed they might require the SO password of the HSM. When it is required, the utility
prompts the operator for the values (unless the values have already been entered during the execution of the
same command, or provided by the -p option).
Audit trail entries are created when FMs are loaded or disabled. In order to create event logs correctly the HSM
real time clock should be initialized.

NOTE To set the real time clock, and enable audit entries, initialize the Auditor Role.

In order to load an FM, a certificate must be present in the Admin Token of the HSM. Usually a PEM-encoded
certificate file is provided with the FM image file that you can load to the HSM Admin slot with the cmu tool.
If the utility detects that the certificate is not already present in the Admin token, the utility imports the certificate
from the cert file.

If no Certificate label is specified then a Certificate file name must be specified and the ctfm utility creates a
temporary cert object from the file contents.

FM STATES
Each FM in the HSM has a certain state.

Enabled The FM is in memory and has been started. On HSM restart the FM will return back to
the Enabled state.

Zombie The FM is in memory and has been started. On HSM restart the FM will disappear

Loaded The FM is not in memory and has not been started. After next HSM restart the FM will
go to the Enabled state.

InActive The FM is loaded but has not been started because it is waiting for the SMFS
Activation.

Not started The FM is loaded but failed to start – this could be due to the HSM FW version being
too old for the FM.

COMMANDS

d Disable/Delete FM
ctfm d [-a<device> | -A] [-i <fmid>] [-p <password | -e<PED>]

This command is used to remove an FM.

The exact behaviour depends on the state of the FM.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 45

Chapter 6: Utilities Reference

Enabled FM changed to zombie state

Zombie No action

Loaded FM will be deleted

NOTE The HSM SO PIN will be required.

i Import FM
ctfm i [-a<device> | -A] [–c<certFile>] [-p <password> | -e<PED>] [-l<certLabel>] -f<fmFile>

Load a new FM onto an HSM.

The FM image file contains an FM image and a digital signature. The import operation directs the image and
signature to the appropriate Public Key Certificate file which is used to verify the signature. The command looks
on the Admin Token of the device for a certificate label equal to the <certLabel> parameter.

If the certificate object is not present then the utility will attempt to create a certificate object from the contents of
the certFile i.e. import the certificate

If the <certFile> parameter is not provided the utility will assume the filename is the <certLabel> with .cert or .crt
appended. For example, if the certificate label is myfm then the utility will search for a file named myfm.cert and
then myfm.crt.

The exact behavior of the command depends on the state of other FMs in the HSM:

> The FM will be installed in the HSM in a Loaded state.

> If a FM with the same ID and in a Loaded state is already in the HSM then the new FM will replace the old
FM, and the old FM will enter a Zombie state.

> If a FM with the same ID and in a Enabled/Zombie state is already in the HSM then the old FM changes to or
remains in Zombie state.

The exact behavior depends on the state of the HSM:

Enabled HSM restart will restore all Enabled FMs

Zombie HSM restart will delete all Zombie FMs

Loaded HSM restart will enable all Loaded FMs

NOTE The HSM SO PIN will be required.

q Query FM Status
ctfm q [-a<device> | -A]

Queries the status of an FM (if any) on all or an individual HSM.

Use this command to obtain the name, version information and disable status of an FM or to see if an FM is
loaded at all.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 46

Chapter 6: Utilities Reference

NOTE If the FM state is Enabled but the Status shows an error then it might not be possible
to communicate with any FM. You should use ctfm to delete the failing FM.

No PINs are required to perform this operation.

v Verify an FM Signature
ctfm v [-a<device> | -A] [–c<certFile>] [-p <password> | -e<PED>] -l<certLabel> -f<fmFile>

This command is used to verify that an FM file has been signed correctly without attempting to load the FM.

The HSM SO PIN is required.

The behaviour of the <certLabel> and <certFile> parameters is the same as is described for the Import FM
command above.

a Activate SMFS
ctfm a [-a<device> | -A] [-p <password> | -e<PED>] [-n]

This command activates the Secure Memory File system.

Either the HSM SO or Administrator user can activate the SMFS. Default is SO. Specify administrator with "-n".

OPTIONS

The following options are supported:

Parameter Shortcut Description

--device-number=<device> -a Use the admin token on the specified device. The first device is
numbered 0. If this parameter is absent then the first device is
implied. This option is useful in case of more than one HSM in the
host.

--all-devices -A Apply command to all available devices.

--slot=<slotNum> -s Apply command to Device with Cryptoki slot number.

--fmid=<id> -i Specify ID (in HEX) of FM (default 0x100).

--fm-cert-file=<name> -c FM validation certificate filename.

--fm-file=<name> -f Name of file holding a new FM.

-help -h, -? Display usage information.

--fm-cert-label=<name> -l FM validation certificate object label.

--password=<password> -p SO or Admin password – if this option is not included in the
command, then ctfmmay prompt for the password. Not valid
where a PED prompt is required.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 47

Chapter 6: Utilities Reference

Parameter Shortcut Description

--administrator -n Use Administrator role instead of SO (SMFS activation only).

--no-banner -b Do not show program banner during startup.

--ped=<PED> -e Remote PED ID. Default is 0 (zero). Check lunacm to find the
value (usually 100) to insert here.

mkfm
Synopsis
mkfm -f <filename> -k <key> -o <filename> [-c][-b][-e <PED> | -p <password>] [-u <user>]

Description

Themkfm utility is used to time-stamp, hash, and sign an FM binary image.

NOTE At time of initial release for use with Luna HSMs, MKFM supports only RSA private
keys that reside on a Luna token. The signing mechanism uses RSA-SHA512.

Options

The following options are supported:

Parameter Shortcut Description

--input-file=<filename> -
f<filename>

Specifies the relative, or full, path to the FM binary image.

--signer-key=<key> -k<key> This is the name of the private key that is going to be used to sign
the FM image. The format of the key is <TokenName (PIN)
/KeyName>, or <TokenName/KeyName>. TokenName is the
label of the token or you can use SLOTID=x, where x is the slot id
number.

--output-file=<filename> -
o
<filename>

This specifies the relative or full path to the loadable FM image.

--password=<Password> -p
<password>

Optional parameter to specify user password when performing
ctfm operations in batchmode.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 48

Chapter 6: Utilities Reference

Parameter Shortcut Description

--user=<user> -u <user> Optional parameter to specify which user role to login as default
COUser : slot user role name. Default is USER Role:

• 'ad' on Admin partition
• 'co' on User partition
• 'cu'

(specify slot number in key spec and use -u? to get a list)

--no-banner -b Do not show program banner during startup

--ped=<PED> -e<PED> Remote PED ID. Default is 0 (zero). Check lunacm to find the
value (usually 100) to insert here.

--compat -c Compatibility mode – inhibit the use of Luna custom extension
functions that would stop the tool from working with a standard
Cryptoki provider. If the tool displays error messages referring to
missing functions then thesemay be suppressed by adding
FunctionBindLevel=2 to themisc section of /etc/Chrystoki.conf

NOTE The long forms require two leading dashes for each option. The short forms take a
single leading dash, and an optional space.

fmrecover
Synopsis:
fmrecover [--smfs] [--fm] <path>

--smfs Erase the SMFS

--fm Erase all FMs

<path> Path to HSM (k7) device node. An example path is: /dev/k7pf0

Description:

The FM recovery utility is used to force either all the FMs and/or the entire Secure Memory in the event that the
HSM has been rendered non-responsive due to a badly configured FM being loaded.

NOTE This tool is for use on a computer that hosts a SafeNet Luna PCIe HSM locally. For
SafeNet Luna Network HSMs, use the LunaSH hsm fm commands.

Examples:

To delete all FMs execute:

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 49

Chapter 6: Utilities Reference

./fmrecover --fm /dev/k7pf0
To reformat SMFS execute:

./fmrecover --smfs /dev/k7pf0
To delete all FMs and reformat SMFS execute:

./fmrecover --fm --smfs /dev/k7pf0
The FM part of the command can be tested by loading an FM and then running ./fmrecover --fm /dev/k7pf0.
Ensure that the FM is deleted.

The SMFS part of the command can be tested by running /fmrecover --smfs /dev/k7pf0. Ensure that the
message "Formatting SMFS..." appears in the dmesg log.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 50

Chapter 7: Cryptographic Engine

CHAPTER 7: Cryptographic Engine

The Cryptoki interface provides a standardized way of performing cryptographic operations. However a
considerable amount of overhead is introduced.

SafeNet Luna FM SDK Package provides internal APIs that bypass the PKCS #11 subsystem to provide high
performance cryptographic functionality. This chapter describes the functions in this API. It contains the
following functions:

> "single part Sign operation" on the next page

> "part verify operation" on the next page

> "single part encrypt operation" on the next page

> "single part decrypt operation" on the next page

> "single part digest operation" on the next page

> "multi-part sign operation init" on page 53

> "multi-part encrypt operation init" on page 53

> "multi-part verify operation init" on page 53

> "multi-part decrypt operation init" on page 53

> "multi-part digest operation init" on page 53

> "multi-part sign operation update" on page 53

> "multi-part verify operation update" on page 53

> "multi-part decrypt operation update" on page 54

> "multi-part encrypt operation update" on page 54

> "multi-part digest operation update" on page 54

> "multi-part sign operation final" on page 54

> "multi-part verify operation final" on page 54

> "multi-part decrypt operation final" on page 54

> "multi-part encrypt operation final" on page 55

> "multi-part digest operation final" on page 55

Parameters
The Crypto Engine API uses PKCS#11 parameters for all parameters except for keys.

For a full list of supported mechanisms refer to "SupportedMechanisms" on page 1.
The <FMCE_KEY_PTR> parameter is a pointer to a union of all supported key types. For more details and a
list of supported key types refer to the fmcrypto.h header file.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 51

Chapter 7: Cryptographic Engine

single part Sign operation
CK_RV FMCE_Sign(

CK_MECHANISM_PTR pMech, // IN: mechanism type and parameters
FMCE_KEY_PTR pKey, // IN: key value

CK_ULONG ulDataInLen, // len of data to sign
CK_BYTE_PTR pDataIn, // IN: data to sign
CK_ULONG_PTR pulSigOutLen, // IN: len of sig buf OUT: len of signature
CK_BYTE_PTR pSigOut // OUT: signature

);

part verify operation
extern CK_RV FMCE_Verify(

CK_MECHANISM_PTR pMech, // IN: mechanism type and parameters
FMCE_KEY_PTR pKey, // IN: key value

CK_ULONG ulDataInLen, // len of signed data
CK_BYTE_PTR pDataIn, // IN: signed data
CK_ULONG ulSigLen, // len of signature
CK_BYTE_PTR pSig); // IN: signature

single part encrypt operation
CK_RV FMCE_Encrypt(

CK_MECHANISM_PTR pMech, // mechanism type and parameters
FMCE_KEY_PTR pKey, // key value

CK_ULONG ulDataInLen,
CK_BYTE_PTR pDataIn,
CK_ULONG_PTR pulOutLen,
CK_BYTE_PTR pOut);

single part decrypt operation
CK_RV FMCE_Decrypt(

CK_MECHANISM_PTR pMech, // mechanism type and parameters
FMCE_KEY_PTR pKey, // key value

CK_ULONG ulDataInLen,
CK_BYTE_PTR pDataIn,
CK_ULONG_PTR pulOutLen,
CK_BYTE_PTR pOut);

single part digest operation
CK_RV FMCE_Digest(

CK_MECHANISM_PTR pMech, // IN: mechanism type and parameters

CK_ULONG ulDataInLen, // len of data to digest
CK_BYTE_PTR pDataIn, // IN: data to digest
CK_ULONG_PTR pulDigOutLen, // IN: len of digest uffer OUT: len of digest
CK_BYTE_PTR pDigOut // OUT: digest

);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 52

Chapter 7: Cryptographic Engine

multi-part sign operation init
CK_RV FMCE_SignInit(

CK_MECHANISM_PTR pMech, // IN: mechanism type and parameters
FMCE_KEY_PTR pKey, // IN: key value

FMCE_HANDLE_PTR pCtxHdl // OUT: handle for following calls
);

multi-part encrypt operation init
CK_RV FMCE_EncInit(

CK_MECHANISM_PTR pMech, // mechanism type and parameters
FMCE_KEY_PTR pKey, // key value

FMCE_HANDLE_PTR pCtxHdl // OUT: handle for following calls
);

multi-part verify operation init
CK_RV FMCE_VerifyInit(

CK_MECHANISM_PTR pMech, // mechanism type and parameters
FMCE_KEY_PTR pKey, // key value

FMCE_HANDLE_PTR pCtxHdl // OUT: handle for following calls
);

multi-part decrypt operation init
CK_RV FMCE_DecInit(

CK_MECHANISM_PTR pMech, // mechanism type and parameters
FMCE_KEY_PTR pKey, // key value

FMCE_HANDLE_PTR pCtxHdl // OUT: handle for following calls
);

multi-part digest operation init
CK_RV FMCE_DigestInit(

CK_MECHANISM_PTR pMech, // mechanism type and parameters

FMCE_HANDLE_PTR pCtxHdl // OUT: handle for following calls
);

multi-part sign operation update
CK_RV FMCE_SignUpdate(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulDataInLen, // len of data to sign
CK_BYTE_PTR pDataIn // IN: data to sign

);

multi-part verify operation update
CK_RV FMCE_VerifyUpdate(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulDataInLen, // len of signed data
CK_BYTE_PTR pDataIn // IN: signed data

);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 53

Chapter 7: Cryptographic Engine

multi-part decrypt operation update
CK_RV FMCE_DecUpdate(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulDataInLen, // len of cipher data
CK_BYTE_PTR pDataIn, // IN: cipher data
CK_ULONG_PTR pulDataOutLen, // IN: o/p data len OUT: len clear text
CK_BYTE_PTR pDataOut // OUT: clear text

);

multi-part encrypt operation update
CK_RV FMCE_EncUpdate(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulDataInLen, // len clear text
CK_BYTE_PTR pDataIn, // IN: clear text
CK_ULONG_PTR pulDataOutLen,// IN: len cipher text buffer OUT: len cipher text
CK_BYTE_PTR pDataOut // OUT: cipher text

);

multi-part digest operation update
CK_RV FMCE_DigestUpdate(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulDataInLen, // len of data
CK_BYTE_PTR pDataIn // IN: data to digest

);

multi-part sign operation final
CK_RV FMCE_SignFinal(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulMacLen, // len (in bytes) of MAC (only for MAC operations)

else ignored
CK_ULONG_PTR pulSigOutLen, // IN: len of signature buffer OUT: len of

signature
CK_BYTE_PTR pSigOut // OUT: signature

);

multi-part verify operation final
CK_RV FMCE_VerifyFinal(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG ulSigInLen, // len of signature
CK_BYTE_PTR pSigIn // IN: signature

);

multi-part decrypt operation final
CK_RV FMCE_DecFinal(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG_PTR pulDataOutLen,// IN: len of clear text buffer OUT: len of clear

text
CK_BYTE_PTR pDataOut // OUT: clear text

);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 54

Chapter 7: Cryptographic Engine

multi-part encrypt operation final
CK_RV FMCE_EncFinal(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG_PTR pulDataOutLen,// IN: len of buffer OUT: len cipher text
CK_BYTE_PTR pDataOut // OUT: cipher text

);

multi-part digest operation final
CK_RV FMCE_DigestFinal(

FMCE_HANDLE ulCtxHdl, // handle from init operation
CK_ULONG_PTR pulDigOutLen, // IN: len of buffer OUT: len of digest
CK_BYTE_PTR pDigOut // OUT: digest

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 55

Chapter 8: Cipher Objects

CHAPTER 8: Cipher Objects

Some limited legacy Cipher Objects are provided in the SafeNet Luna FM SDK Package to assist developers
porting FM designs to SafeNet Luna HSM.

A subset of the PTKCipherObjects and Modes are supported in Luna:

Cipher Object Mode

FMCO_IDX_AES ECB, CBC, MAC_3, MAC_GEN

FMCO_IDX_DES ECB, CBC, MAC_3, MAC_GEN

FMCO_IDX_TRIPLEDES ECB, CBC, MAC_3, MAC_GEN

FMCO_IDX_DSA 0 (Sign/Verify)

FMCO_IDX_RSA (Sign/Verify) RSA_MODE_PKCS

FMCO_IDX_RSA (Enc/Dec) RSA_MODE_X509,
RSA_MODE_PKCS,
RSA_MODE_OAEP

FMCO_IDX_RSA_MD5 0

FMCO_IDX_RSA_SHA1 0

FMCO_IDX_RSA_SHA224 0

FMCO_IDX_RSA_SHA256 0

FMCO_IDX_RSA_SHA384 0

FMCO_IDX_RSA_SHA512 0

FMCO_IDX_HMACMD5 0

FMCO_IDX_HMACSHA1 0

FMCO_IDX_HMACRMD160 0

FMCO_IDX_CAST ECB, CBC

FMCO_IDX_RC2 ECB, CBC, MAC_3, MAC_GEN

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 56

Chapter 9: Hash Objects

CHAPTER 9: Hash Objects

Some limited legacy Hash Objects are provided in the SafeNet Luna FM SDK Package to assist developers
porting FM designs to SafeNet Luna HSM.

A subset of the PTKHashObjects are supported in Luna:

> FMCO_IDX_MD2

> FMCO_IDX_MD5

> FMCO_IDX_RMD160

> FMCO_IDX_SHA1

> FMCO_IDX_SHA224

> FMCO_IDX_SHA256

> FMCO_IDX_SHA384

> FMCO_IDX_SHA512

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 57

Chapter 10: Setting Privilege Level

CHAPTER 10: Setting Privilege Level

CT_SetPrivilege allows elevation of privilege level to circumvent built-in security mechanisms on PKCS#11
objects. Elevated privilege level allows override of sensitive attribute and key usage.

Two possible settings are available as follows:

> PRIVILEGE_NORMAL=0

> PRIVILEGE_OVERRIDE=1

The CT_SetPrivilege command is only available to FMs – it cannot be called from outside the HSM.

SetPrivilegeLevel

Synopsis
void CK_ENTRY CT_SetPrivilegeLevel(int level);

Description
This function is a SafeNet extension to PKCS#11. It can be used to set the privilege level of the caller to the
specified value, if the caller has access to the function.

The function cannot be called from outside the HSM (only from inside an HSM).

Use the CT_SetPrivilegeLevel function to set elevated privilege for a short time during the processing of a
message. When the privileged access is complete call the CT_SetPrivilegeLevel function to set the privilege
back to normal.

In the environment of a FM, the privilege is automatically returned to normal when the current message is
complete. I.e. when the FM dispatch function returns.

The HSM destructive policy HSM_CONFIG_ALLOW_DISABLING_FM_PRIVILEGE_LEVEL may be set to
disable the use of the CL_SetPrivilegeLevel().

PRIVILEGE_OVERRIDEmode allows the FM to do the following:

> Read Sensitive attributes

> Perform Cryptographic Initialization calls that contradict the usage attributes. That is, you can callC_
EncryptInit with an object that has CKA_ENCRYPT set to FALSE.

> Use C_CreateObject() to create secret keys and private keys (CKO_SECRET_KEY and CKO_PRIVATE_
KEY).

> Use C_SetAttributeValue() to change an attribute of an object when CKA_MODIFIABLE=false. Applies
only to attributes that could be changed when the CKA_MODIFIABLE is true.

> Create objects as a Crypto Officer while only logged on as a Crypto User role.

Arguments
level - desired privilege.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 58

Chapter 11: SMFSReference

CHAPTER 11: SMFSReference

SMFS is a Secure Memory File System (as exported to FMs). It allows FMs to store keys and objects in the
HSM's Flash memory. Objects are always encrypted by an HSM-controled key, before being stored in Flash. It
becomes unrecoverable upon tampering of the HSM, when HSM Policy (40) Decommission on Tamper is
enabled.

It has the following general specifications:

> Arbitrary depth directory structure supported

> File names are any character other than '\0' or '/'

> Path separator is '/'. The Windows \ is not allowed

> Files are fixed size and initialized with zeros when created

> Directories will expand in size as needed to fit more files

This chapter contains the following sections:

> "Important Constants" below

> "Error Codes" below

> "File Attributes Structure (SmFsAttr)" on the next page

> "Function Descriptions" on the next page

Important Constants
> Maximum file name length is 16

> Maximum path length is 100

> Maximum number of open files is 32

> Maximum number of file search handles is 16

Error Codes

SMFS_ERR_ERROR A general error has occurred

SMFS_ERR_NOT_INITED The SMFS has not been initialized

SMFS_ERR_MEMORY The SMFS has run out of memory

SMFS_ERR_NAME_TOO_LONG The name given for a file is too long

SMFS_ERR_RESOURCES The SMFS has run out of resources

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 59

Chapter 11: SMFSReference

SMFS_ERR_PARAMETER An invalid parameter was passed to SMFS

SMFS_ERR_ACCESS User does not have request access to file

SMFS_ERR_NOT_FOUND Requested file was not found

SMFS_ERR_BUSY Operation is being attempted on an open file

SMFS_ERR_EXIST A file being created already exists

SMFS_ERR_FILE_TYPE Operation being performed on wrong file type

File Attributes Structure (SmFsAttr)

Synopsis
SmFsAttr {
unsigned int Size;
unsigned int isDir;

};

Description

This structure holds the file or directory attributes

Members

Size Current file size in bytes or directory size in entries.

isDir Flag specifying if file is a directory.

Function Descriptions
The SMFS reference section contains the following functions:

> "SmFsCreateDir " on page 62

> "SmFsCloseFile" on page 63

> "SmFsCalcFree" on page 64

> "SmFsCreateFile" on page 65

> "SmFsCreateFileClr" on page 65

> "SmFsDeleteFile" on page 67

> "SmFsFindFile" on page 68

> "SmFsFindFileClose" on page 69

> "SmFsFindFileInit" on page 70

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 60

Chapter 11: SMFSReference

> "SmFsGetFileAttr" on page 71

> "SmFsOpenFile" on page 73

> "SmFsReadFile" on page 74

> "SmFsRenameFile" on page 75

> "SmFsWriteFile" on page 76

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 61

Chapter 11: SMFSReference

SmFsCreateDir
Synopsis

int SmFsCreateDir(const char * name,
 unsigned int entries);

Description

Allocates SRAM memory and a directory entry for a directory.

Parameters

name Pointer to the absolute path of the directory to create.

entries Maximum number of entries that may exist in this
directory.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 62

Chapter 11: SMFSReference

SmFsCloseFile
Synopsis

int SmFsCloseFile(SMFS_HANDLE fh);

Description

Close the file by removing it from the file descriptor table.

Parameters

fh File handle of file to close.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 63

Chapter 11: SMFSReference

SmFsCalcFree
Synopsis

unsigned int SmFsCalcFree(void);

Return Value

Returns amount of free memory (in bytes) in the file system.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 64

Chapter 11: SMFSReference

SmFsCreateFile
Synopsis

int SmFsCreateFile(const char * name,
 unsigned int len);

Description

Allocates NVRAM memory and a directory entry for an encrypted file. Once a file has been created, its size can
not be changed.

NOTE These files are encrypted. If the HSM experiences a tamper event it will respond by
erasing the encryption key. This means that the confidentiality of the file contents is protected
by both Tamper Resistance and Tamper Response security Features.

Parameters

name Pointer to the absolute path of file to create.

len Size of file to create (in bytes).

Return Value

Returns 0 or an error condition.

SmFsCreateFileClr
Synopsis

int SmFsCreateFileClr(const char * name,
 unsigned int len);

Description

Allocates NVRAM memory and a directory entry for an unencrypted file. Once a file has been created, its size
can not be changed.

NOTE Clear files are not encrypted. This means that they are faster, compared to encrypted
files, when reading and especially, writing.

The confidentiality of the file contents is protected by Tamper Resistance only.

Clear files are suitable for logs.

The advantage of these files is they are quicker to update than an encrypted file.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 65

Chapter 11: SMFSReference

Parameters

name Pointer to the absolute path of file to create.

len Size of file to create (in bytes).

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 66

Chapter 11: SMFSReference

SmFsDeleteFile
Synopsis

int SmFsDeleteFile(const char * name);

Description

Deletes a file from secure memory by removing the directory entry and zeroing out its data area.

Parameters

name Pointer to the absolute path of the file to delete.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 67

Chapter 11: SMFSReference

SmFsFindFile
Synopsis

int SmFsFindFile(int sh,
char * name,
unsigned int size

);

Description

Fetch name of next directory entry from file search context

Parameters

sh Search handle to continue.

name Pointer to location to hold found file namematching
pattern.

pattern Length of name buffer.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 68

Chapter 11: SMFSReference

SmFsFindFileClose
Synopsis

int SmFsFindFileClose(int sh);

Description

Close a file search context.

Parameters

sh Search handle to close.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 69

Chapter 11: SMFSReference

SmFsFindFileInit
Synopsis

int SmFsFindFileInit(int *sh,
 const char * path,
 const char * pattern
);

Description

Creates a file iteration context.

Wild card parameters include:

? match any character

* matchmany characters

Parameters

sh Pointer to location to hold search handle

path Pointer to the absolute path where to search for a file.

pattern Pointer to pattern of file name (including wild cards) to
search for.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 70

Chapter 11: SMFSReference

SmFsGetFileAttr
Synopsis

int SmFsGetFileAttr(const char * name,
 SmFsAttr * a);

Description

Get attributes of an open file. Returns an attributes structure for the unopen file ‘name’.

Parameters

name Pointer to absolute path.

a Pointer to the returned attributes structure.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 71

Chapter 11: SMFSReference

SmFsGetOpenFileAttr
Synopsis

int SmFsGetOpenFileAttr(SMFS_HANDLE fh,
 SmFSAttr * a);

Description

Returns an attributes structure for the open file ‘name’.

Parameters

fh Pointer to the file handle.

a Pointer to the returned attributes structure.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 72

Chapter 11: SMFSReference

SmFsOpenFile
Synopsis

int SmFsOpenFile(SMFS_HANDLE * fh,
 const char * name);

Description

Finds the file and creates an entry for it in the file descriptor table. The table index returned in ‘fh’ and is used
by other file functions.

Parameters

fh Pointer to the file handle.

name Pointer to absolute path.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 73

Chapter 11: SMFSReference

SmFsReadFile
Synopsis

int SmFsReadFile(SMFS_HANDLE fh,
 unsigned int offset,
 char *buf,
 unsigned int bc);

Description

Reads data from file.

Parameters

fh Open file handle.

offset Zero based starting point.

buf Pointer to the returned result.

bc The number of bytes to read from file.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 74

Chapter 11: SMFSReference

SmFsRenameFile
Synopsis

int SmFsRenameFile(const char * oldName,
const char * newName
);

Description

Renames a file.

Parameters

oldName Pointer to the absolute path of file to rename.

newName Pointer of new file name only (no path).

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 75

Chapter 11: SMFSReference

SmFsWriteFile
Synopsis

int SmFsWriteFile(SMFS_HANDLE fh,
 unsigned int offset,
 char *buf,
 unsigned int bc);

Description

Writes data to file.

Parameters

fh Open file handle.

offset Zero based starting point.

buf Data to be written.

bc The number of bytes to write.

Return Value

Returns 0 or an error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 76

Chapter 12: FMDebug Reference

CHAPTER 12: FMDebug Reference

FMSDK provides trace functions to FM writers. Debug information is readable via the dmesg utility on the host.
On Linux, these debug messages are also written to /var/log/messages.
On Network HSM appliances, export supportinfo with the Luna Shell "hsm supportinfo" on page 1 command
and check the output of "syslog tail" on page 1.

Function Descriptions
This section contains the following function descriptions:

> "printf/vprintf" on the next page

> "dump" on page 79

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 77

Chapter 12: FMDebug Reference

printf/vprintf
In addition to FMDEBUG logging, FM SDK 5.0 introduces support for the C standard printf() and vprintf()
functions. These functions can be called at any time, with or without the debug library, and accept all standard
C99 formatting specifiers.

In FMs, these functions do not print to stdout, but instead send log messages to the hsmtrace log. Since these
are formatting messages for a log rather than stdout, there are two differences from the standard C
implementations.

Each line of output from printf()/vprintf() is prefixed with a log header that includes the FM’s id.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 78

Chapter 12: FMDebug Reference

dump
Synopsis
include <fm/hsm/fmdebug.h>
void dump(char *desc, unsigned char *data, short len);

Description

This function converts unprintable character values into hex values and sends them to the HSM trace log.

Parameters

desc Pointer to description of the dumped buffer; this
parameter is dumped immediately before the dumped
buffer.

data Pointer to a buffer to be dumped.

len The length of the buffer to be dumped (in bytes).

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 79

Chapter 13: Message Dispatch API Reference

CHAPTER 13: Message Dispatch API
Reference

The FM SDK has a number of host libraries that must be linked into the host application in order to be able to
communicate with an FM. The following functions labeled by theMD_ prefix form the Message Dispatch (MD)
API. The function prototypes are defined in the header filemd.h. The library ethsm provides the following
functions:

> "MD_Initialize" on the next page

> "MD_Finalize" on page 82

> "MD_GetHsmCount" on page 83

> "MD_GetHsmState" on page 84

> "MD_ResetHsm" on page 86

> "MD_SendRecieve" on page 87

> "MD_GetParameter" on page 90

> "MD_GetEmbeddedSlotID" on page 91

> "MD_FmIdFromName" on page 91

> "MD_GetHsmInfo" on page 92

> "MD_GetHsmIndexForSlot" on page 94

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 80

Chapter 13: Message Dispatch API Reference

MD_Initialize
Initializes the message dispatch library. Until this function is called, all other functions will return error code
MDR_NOT_INITIALIZED.

The MD_Initialize function is not re-enterant. Do not call this function twice at the same time from two different
threads.

The message dispatch library is designed to operate on a stable HSM system (either local or remote to the
Host computer). During the initialization of the message dispatch library, the number of accessible HSMs is
determined and HSM indices are allocated to accessible HSMs. These variables are utilized in other functions;
therefore, if the HSM system should change the message dispatch library should be re-initialized.

Synopsis
 #include <md.h>
 MD_RV MD_Initialize(void)

Input Requirements

None

Input Parameters

None

Output Requirements

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_UNSUCCESSFUL Error in operation. Operation failed.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 81

Chapter 13: Message Dispatch API Reference

MD_Finalize
Finalizes the message dispatch library. After this function returns, only theMD_Initialize() function should be
called. All other functions will return error code MDR_NOT_INITIALIZED.

The MD_Finalize function is not re-enterant. Do not call this function twice at the same time from two different
threads.

Synopsis
 #include <md.h> void
 MD_Finalize(void)

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

None

Output Requirements

None

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 82

Chapter 13: Message Dispatch API Reference

MD_GetHsmCount
Retrieves the number of accessible HSMs at the time the message dispatch library was initialized - the time the
MD_initialize() function was called.

Synopsis
 #include <md.h>
 MD_RV MD_GetHsmCount(uint32* pHsmCount)

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

pHsmCount Pointer to the variable which will hold the number of
visible HSMs when the function returns. The pointer
must not be NULL.

Output Requirements

The HSM Count is returned in <pHsmCount>.

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_INVALID_PARAMETER If pHSMCount was NULL

MDR_NOT_INITIALIZE Themessage dispatch library was not previously
initialized successfully

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 83

Chapter 13: Message Dispatch API Reference

MD_GetHsmState
Retrieves the current state of the specified HSM.

Synopsis
#include <md.h>
MD_RV MD_GetHsmState(uint32 hsmIndex,

HsmState_t* pState,
uint32* pErrorCode);

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

hsmIndex Zero based index of the HSM to query. WhenMD_
Initialize () is invoked themessage dispatch library
assigns an index to each available HSM.

pState Pointer to a variable to hold the HSM state. The pointer
must not be NULL.

pErrorCode Not used: always return zero. The pointer may be NULL.

Output Requirements

Parameter Description

pState When the function returns, pState points to a variable
containing one of the following values. These values are
defined in hsmstate.h

Label Value Meaning

S_NORMAL_OPERATION 0x8000 The HSM is operational.

S_HSM_DISCONNECTED 2 NoHSM detected.

S_HSM_ERASED 1 HSMDecommissioned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 84

Chapter 13: Message Dispatch API Reference

Label Value Meaning

S_TAMPER_RESPOND 3 HSM is in Tampered State.

NOTE Any other value indicates a non-operational HSM

pErrorCode Error code can be ignored.

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_UNSUCCESSFUL Error in operation. Operation failed.

MDR_NOT_INITIALIZE Themessage dispatch library was not previously
initialized successfully

MDR_INVALID_HSM_INDEX HSM index was not in the range of accessible HSMs

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 85

Chapter 13: Message Dispatch API Reference

MD_ResetHsm
Resets the specified HSM.

Synopsis
#include <md.h>
MD_RV MD_ResetHsm(uint32 hsmIndex);

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.
The remote server may disable or limit the use of this function via the ET_HSM_NETSERVER_ALLOW_
RESET environment variable. Refer to the HSM Access Provider Install Guide for further details. If this
limitation has been set, then this function may only be called when the HSM state is not S_NORMAL_
OPERATION.

Input Parameters

hsmIndex Zero based index of the HSM to query. For remote HSMs
(such as the SafeNet Luna Network HSM), the HSM
indices are numbered according to the order that the
HSM's IP addresses were entered in the ET_HSM_
NETCLIENT_SERVERLIST registry key.

NOTE WhenMD_Initialize() is invoked the message dispatch library assigns an index to
each available HSM.

Refer to "MD_GetHsmState" on page 84 for further details.

Output Requirements

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_UNSUCCESSFUL Error in operation. Operation failed.

MDR_NOT_INITIALIZE Themessage dispatch library was not previously
initialized successfully

MDR_INVALID_HSM_INDEX HSM index was not in the range of accessible HSMs

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 86

Chapter 13: Message Dispatch API Reference

MD_SendRecieve
Send a request and receive the response.

Synopsis
#include <md.h>
MD_RV MD_SendReceive(uint32 hsmIndex,

uint32 originatorId,
uint16 fmNumber,
MD_Buffer_t* pReq,
uint32 timeout,
MD_Buffer_t* pResp,
uint32* pReceivedLen,
uint32* pFmStatus);

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

hsmIndex Zero based index of the HSM to query. For remote HSMs
(such as the SafeNet Luna Network HSM), HSMs are
numbered according to the order that the HSM's IP
addresses were entered in the ET_HSM_NETCLIENT_
SERVERLIST registry key. Refer to HSM Access
Provider Install Guide for further details. WhenMD_
Initialize() is invoked themessage dispatch library
assigns an index to each available HSM.

fmNumber Identifies whether the request is intended for a
Functionality Module(FM) or not. This valuemust be set
to FM_NUMBER_CUSTOM_FM (#include csa8fm.h).

originatorId Id of the request originator. This value is typically 0. The
value should only be non-zero when the calling
application is acting as a proxy.

pRef Array of request buffers to send to the FMmodule. For
user-defined functions, the structure and content of the
array of buffers is user defined. Refer to

javahsmreset:javahasmstate An example of how to construct the response and
request buffers for a user-defined function in Java.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 87

Chapter 13: Message Dispatch API Reference

Each buffer in the array is an MD_Buffer_t struct, which contains a pointer to the data and the number of bytes
of data, as detailed below.

typedef struct
{
uint8*pData;
unit32length;
} MD_Buffer_t;

In the final MD_Buffer_t struct the pData field must contain a NULL pointer and the length field should be set to
0. This indicates the end of the array of buffers. This scheme allows arrays with variable number of buffers to
be passed into the function.

The following diagram illustrates an array of buffers containing two buffers. The first buffer contains 6 bytes of
data and the second buffer contains 4 bytes of data. The last array element contains an array with the pData
field set to NULL and the length field set to 0 to indicate the end of the array.

Figure 3: An example of a request buffers data type for function MD_SendReceive

timeout Themessage timeout in ms. If set to 0, an internal
default of 10minutes is used.

pResp Response buffers. When the function returns, the
response from the FM is contained in these buffers.
Refer to the description of the pReq buffers above for
details regarding how these buffers must be constructed.
Thememory for the pResp buffers must be allocated in
the context of the application which calls the function.
The pData field and length fields must be assigned
appropriately to conform to the anticipated response
packet.
The buffers are filled in order until either the entire
response is copied or the buffers overflow (this condition
determined by pReceivedLen described below).
The value of this parameter can be NULL if the FM
function will not return a response.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 88

Chapter 13: Message Dispatch API Reference

pRecievedLen Address of variable to hold the total number of bytes
placed in the response buffers. Thememory for this
variable must be allocated in the context of the
application which calls the function. The value of this
parameter can be NULL if the FM function will not return
a response.

pFmStatus Address of variable to hold the status/return code of the
Functionality Module which processed the request. The
meaning of the value is defined by the FM. The value of
this parameter can be NULL.

Output Requirements

The request is sent to the appropriate FM module. Where applicable, the response is returned in the response
buffers.

The function returns the following codes:

Function Code Qualification

MDR_OK No error.

MDR_UNSUCCESSFUL Error in operation. Operation failed.

MDR_INVALID_PARAMETER The pointer supplied for pReq is NULL. The request
requires a single response and the pointer supplied for
pResp os NULL, or pReserved is not zero.

MDR_NOT_INITIALIZE Themessage dispatch library was not previously
initialized successfully.

MDR_INVALID_HSM_INDEX HSM index was not in the range of accessible HSMs.

MDR_INSUFFICIENT_RESOURCE There is an insufficient memory on either the host or
adapter.

MDR_OPERATION_CANCELLED The operation was cancelled in the HSM. This code will
not be returned.

MDR_INTERNAL_ERROR TheHSM has detected an internal error. This code will be
returned if there is a fault in the firmware or device driver.

MDR_ADAPTER_RESET The HSMwas reset during the operation.

MDR_FM_NOT_AVAILABLE An invalid FM number was used.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 89

Chapter 13: Message Dispatch API Reference

MD_GetParameter
This function obtains the value of a system parameter.

Synopsis
#include <md.h>
MD_RV MD_GetParameter(MD_Parameter_t parameter,

void*pValue,
unsigned int valueLen);

Input Requirements

The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

The parameter to query. The following parameter may be queried. The parameter is defined in md.h

Parameter Meaning

MDP_MAX_BUFFER_LENGTH The recommendedmaximum buffer size, in number of bytes, for
messages that can be sent using theMD library. While messages larger
than this buffer size can be accepted by the library, it is not recommended
to do so. Different types of HSM access providers have different values
for this parameter. When this parameter returns 0 via pValue this means
that there is no limit to the amount of data that can be sent using this
library.

pValue The address of the buffer to hold the parameter value. Thememory for the
buffer must be allocated in the context of the application which calls the
function. The size of the buffer is determined by the parameter that is being
obtained.

The following table specifies the buffer requirements for the parameter.

Parameter Size Meaning

MDP_MAX_BUFFER_LENGTH 4 bytes Unsigned integer

valueLen The length of the buffer, pValue in bytes. If the buffer
length is not correct MDR_INVALID_PARAMETER is
returned.

Output Requirements

The function returns the following codes:

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 90

Chapter 13: Message Dispatch API Reference

Function Code Qualification

MDR_OK No error.

MDR_UNSUCCESSFUL The pointer supplied for pReq is NULL. The request
requires a single response and the pointer supplied for
pResp os NULL, or pReserved is not zero.

MD_GetEmbeddedSlotID
Synopsis:

 #include <md.h>
 MD_RV MD_GetEmbeddedSlotID(CK_SLOT_ID hostP11SlotId,

 uint32_t *pHsmIndex);

Input Requirements

None

Input Parameters:

hostP11SlotID Host side slot ID of a P11 slot.

pHsmIndex Pointer to where embedded slot number is returned.

Output Requirements:

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_NO_EMBEDDED_SLOT Indicates the host slot does not have its peer in the HSM

Any other MD_RV error code Error in operation. Operation failed.

MD_FmIdFromName
Synopsis

#include <md.h>
MD_RV MD_GetFmIdFromName (uint32_t hsmIndex,

 char *pName,
 uint32_t len,
 uint32_t *pFMID);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 91

Chapter 13: Message Dispatch API Reference

For HSMs with FMs enabled this function finds the FMID value for a FM based on the FM name.

Input Requirements

None

Input Parameters

hsmIndex Zero based index of the HSM to query.

pName FM name.

len Length of FM name

pFMID Pointer to where to store the resulting FMID.

Output Requirements

The function returns the following codes:

Function Code Qualification

MDR_OK No error

MDR_UNSUCCESSFUL If an FM not found

Any other MD_RV error code to indicate error condition.

MD_GetHsmInfo
Fetch information about an HSM.

Synopsis
#include <md.h>
MD_RV MD_GetHsmInfo(uint32 hsmIndex,

 MD_Info_t infotype,
 void *pValue,
 uint32 valueLen);

Input Requirements

The message dispatch library has been initialized via the MD_Initialize()function.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 92

Chapter 13: Message Dispatch API Reference

Input Parameters

hsmIndex Which HSM to query.

infotype Which value to query.

pValue Where to store a null-terminated string.

valueLen Size of buffer pointed at by pValue.

Output Requirements

Information Types

Each type of information is returned as a null terminated string.

Result is always NULL-terminated and might be truncated.

Type Description

MDI_HSM_DESCRIPTION Luna HSMDescription.

MDI_HSM_MODEL HSMModel Name.

MDI_HSM_LABEL HSM Label.

MDI_HSM_SERIAL_NUMBER Serial Number as a decimal string.

MDI_HSM_FIRMWARE_VERSION HSM FW Version “mm.nn.ss”

MDI_HSM_CONNECTED Returns no value. This may be used to query if HSM is
connected.

Function Codes

Function Code Qualification

MDR_NOT_INITIALIZED Themessage dispatch library was not previously initialized successfully.

MDR_INVALID_HSM_INDEX HSM index was not in the range of accessible HSMs.

MDR_HSM_NOT_AVAILABLE HSM disconnected.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 93

Chapter 13: Message Dispatch API Reference

MD_GetHsmIndexForSlot
Synopsis

#include <md.h>
MD_RV MD_GetHsmIndexForSlot(CK_SLOT_ID hostP11SlotId,

 uint32_t *pHsmIndex);
For HSMs with FMs enabled, this function translates host PKCS#11 slot ID to the HSM index. Using this
function, FM developers can direct FM custom commands to a respective HSM. This function should be used
by the host ethsm, only.

Input Requirements

None

Input Parameters

hostP11SlotId Host side slot ID of a PKCS#11 slot.

pHsmIndex Pointer to where embedded slot number is returned.

Output Requirements

The function returns the following codes:

Function Code Qualification

MDR_OK For successful execution.

MDR_HSM_NOT_AVAILABLE
If a host slot does not have its peer in any HSMwith FMs
enabled.

Any other MD_RV error code to indicate error condition.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 94

Chapter 14: HSM Functions Reference

CHAPTER 14: HSM Functions Reference

The SafeNet Luna FM SDK Package has a number of libraries that are required to use the functionality
provided to the FM. This section provides information on these functions and the libraries that provide the
function set.

Apart from the functions described in this section, the full set of PKCS#11 functions are also available to the
FM. The PKCS#11 functions are described in the Cprov Programmer Manual, and the PKCS#11 standard. The
library libfmcprov.a provides the PKCS#11 functions.
The HSM Functions section contains reference material for the following functions:

> "Message Streaming Functions" on page 98

> "HIFACE ReplyManagement Functions" on page 107

> "FunctionalityModule Dispatch Switcher Functions" on page 118

> "FMSupport Functions" on page 121

> "Serial Communication Functions" on page 124

> "High Resolution Timer Functions" on page 136

> "Current Application ID functions" on page 139

> " PKCS#11 StateManagement Functions" on page 142

> "FMHeader DefinitionMacro" on page 145

Subset of ISO C99 standard library
The FM SDK supports a subset of the ISO C 99 standard library as defined by ISO/IEC 9899:1999. In general,
floating point math, multibyte character, localization and I/O APIs are not supported. printf and vprintf are
exceptions and are redirected to the logging channel.

In addition to the standard library, C99 language features not present in ANSI C (C89/90) can be used.

The following functions are provided by libfmcrt.a:

assert.h assert

ctype.h tolower, toupper

stdio.h printf, sprintf, sscanf, vprintf, vsprintf, snprintf, vsnprintf,
vsscanf

stdarg.h va_arg(), va_start(), va_end(), va_copy()

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 95

Chapter 14: HSM Functions Reference

stdlib.h abs, atoi, atol, atoll, bsearch, calloc, div, free, labs, llabs,
ldiv, lldiv, malloc,, realloc, strtol, strtoll, strtoull, stroul

string.h memchr, memcmp, memcpy, memmove, memset,
strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strrchr, strspn, strstr, strerror, strtok

time.h asctime, clock, ctime, gmtime, localtime, mktime,
strftime, time, difftime, clock, gettime

Unsupported Standard CAPIs
The following standard headers and their contained APIs are not supported by the FM SDK:

> comple.h

> fenv.h

> float.h

> locale.h

> math.h

> signal.h

> tgmath.h

> wchar.h

> wctype.h

Request/Reply Messagemanagement functions
The following functions are provided by libfmsupt.a:
> "SVC_GetReplyBuffer" on page 108

> "SVC_ConvertReqToReply" on page 109

> "SVC_SendReply" on page 110

> "SVC_ResizeReplyBuffer" on page 111

> "SVC_DiscardReplyBuffer" on page 112

> "SVC_GetUserReplyBuffLen" on page 113

> "SVC_GetRequest" on page 114

> "SVC_GetRequestLength" on page 115

> "SVC_GetReply" on page 116

> "SVC_GetReplyLength" on page 117

High Precision Timers
> "THR_UpdateTiming " on page 138

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 96

Chapter 14: HSM Functions Reference

> "THR_BeginTiming" on page 137

Register Functionality module Custom handler function
The following functions are provided by libfmsupt.a :
> "FMSW_RegisterRandomDispatch" on page 119

> "FMSW_RegisterStreamDispatch" on page 120

Serial communication functions
The following functions are provided by libfmsupt.a :
> "SERIAL_GetNumPorts" on page 129

> "SERIAL_Open" on page 134

> "SERIAL_Close" on page 135

> "SERIAL_InitPort" on page 130

> "SERIAL_SendData" on page 125

> "SERIAL_WaitReply" on page 127

> "SERIAL_RecieveData" on page 126

> "SERIAL_FlushRX" on page 128

> "SERIAL_GetControlLines" on page 131

> "SERIAL_SetControlLines" on page 132

> "SERIAL_SetMode" on page 133

USBAccess functions

NOTE There is no direct USB support at this time.

Support Functions
> "FM_GetNDRandom" on page 122

> "FM_AddToExtLog" on page 123

> "FM_GetCurrentAppId" on page 140

> "FM_SetCurrentAppId" on page 141

> "FM_GetHsmInfo" on page 123

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 97

Chapter 14: HSM Functions Reference

Message Streaming Functions
This section contains descriptions of functions that the FM can use to access the contents of the request
message and to build a corresponding reply message.

Each command that is sent to the FM has a token associated with it that links to the request and reply buffers.

These functions read the request and write the response using a stream model. This scheme can improve
performance by providing lower latency compared to a scheme that waits until all the request is available
before starting processing.

The Message Streaming section contains the following functions:

> "SVC_IO_Read" on the next page

> "SVC_IO_Write " on page 100

> "SVC_IO_GetReadPointer" on page 101

> "SVC_IO_GetReadBuffer" on page 102

> "SVC_IO_UpdateReadPointer" on page 103

> "SVC_IO_GetWritePointer " on page 104

> "SVC_IO_GetWriteBuffer" on page 105

> "SVC_IO_UpdateWritePointer" on page 106

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 98

Chapter 14: HSM Functions Reference

SVC_IO_Read
Reads up to the 'size' bytes to the user destination buffer from the I/O input buffer (also known as the
"command" buffer). Returns the size actually read (if the end of the data is reached the returned size can be
smaller than the requested one).

Synopsis
unsigned int SVC_IO_Read(FmMsgHandle token,

 void *destination,
 int size);

Syntax options

SVC_IO_Read8

SVC_IO_Read16

SVC_IO_Read32
These functions are like SVC_IO_Read() except that the size of the data is assumed by the input data type
and endian conversion is performed.

The implementation may be able to make these functions faster than the generic SVC_IO_Read().
unsigned int SVC_IO_Read8(FmMsgHandle token,

 uint8_t *v);
unsigned int SVC_IO_Read16(FmMsgHandle token,

 uint16_t *v);
unsigned int SVC_IO_Read32(FmMsgHandle token,

 uint32_t *v);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 99

Chapter 14: HSM Functions Reference

SVC_IO_Write
Writes up to the size bytes from the user source buffer to the I/O output buffer (a.k.a. "reply" or "response"
buffer). Returns the size actually written (if the capacity of the output buffer is reached the returned size can be
smaller than the requested size).

Synopsis
unsigned int SVC_IO_Write(FmMsgHandle token,

 void *source,
 int size);

Syntax options

SVC_IO_Write8

SVC_IO_Write16

SVC_IO_Write32
Similar to SVC_IO_Read8/16/32(), but for writes to the reply buffer.

unsigned int SVC_IO_Write8(FmMsgHandle token,
 uint8_t v);

unsigned int SVC_IO_Write16(FmMsgHandle token,
 uint16_t v);

unsigned int SVC_IO_Write32(FmMsgHandle token,
 uint32_t v);

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 100

Chapter 14: HSM Functions Reference

SVC_IO_GetReadPointer
Returns the pointer to the input buffer and its size. If the buffer is internally scattered or chunked in any other
way, the pointer and the size relate to the current chunk only. The user can then directly access the buffer via
the pointer, but only within the limits of the returned size.

Synopsis
unsigned int SVC_IO_GetReadPointer(FmMsgHandle token,

 void **read_pointer);

Input requirements

read_pointermust be the address of a void * variable that will be assigned the read buffer address

Output parameters

The function returns the number of bytes available in the read buffer.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 101

Chapter 14: HSM Functions Reference

SVC_IO_GetReadBuffer
Returns the pointer to consecutive input buffer, chunks will be consolidated if required.

The user can then directly access the full input buffer via the pointer.

Synopsis
unsigned int SVC_IO_GetReadBuffer(FmMsgHandle token,

 void **read_pointer);

Input requirements

read_pointermust be the address of a void * variable that will be assigned the read buffer address.

Output parameters

The function returns the number of bytes available in the read buffer.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 102

Chapter 14: HSM Functions Reference

SVC_IO_UpdateReadPointer
Tells the I/O subsystem that the 'size' amount has been consumed ("read") from the current chunk of the input
buffer. Next SVC_IO_GetReadPointer() call will return the pointer to the remaining portion of the chunk, or to
the new chunk altogether if the 'size' consumes all the remaining portion of the current input buffer chunk.

Synopsis
void SVC_IO_UpdateReadPointer(FmMsgHandle token,

int size);

Input parameters

This function assumes that the 'size' parameter does _not_ exceed the return value of the previous SVC_IO_
GetReadPointer() call.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 103

Chapter 14: HSM Functions Reference

SVC_IO_GetWritePointer
Returns the pointer to the output buffer and its size. If the buffer is internally scattered or chunked in any other
way, the pointer and the size relate to the current chunk only. The user can then directly access the buffer via
the pointer, but only within the limits of the returned size.

Synopsis
unsigned int SVC_IO_GetWritePointer(FmMsgHandle token,

void **write_pointer);

Input requirements

write_pointermust be the address of a void * variable that will be assigned the output buffer address.

Output parameters

The function returns the number of bytes available in the output buffer.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 104

Chapter 14: HSM Functions Reference

SVC_IO_GetWriteBuffer
Returns the pointer to the output buffer and its size. If the buffer is internally scattered or chunked in any other
way, chunks will be consolidated if required. The user can then directly access the buffer via the pointer, but
only within the limits of the returned size.

Synopsis
unsigned int SVC_IO_GetWriteBuffer(FmMsgHandle token,

void **write_pointer);

Input requirements

write_pointermust be the address of a void * variable that will be assigned the output buffer address

Output parameters

The function returns the number of bytes available in the read buffer.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 105

Chapter 14: HSM Functions Reference

SVC_IO_UpdateWritePointer
These two functions do the same for write buffer as the previous ones does for reads from the command
buffer.

Synopsis
unsigned int SVC_IO_GetWritePointer(FmMsgHandle token,

void **write_pointer);
void SVC_IO_UpdateWritePointer(FmMsgHandle token,

int size);

Input requirements

write_pointermust be the address of a void * variable that will be assigned the output buffer address.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 106

Chapter 14: HSM Functions Reference

HIFACE Reply Management Functions
This section contains the legacy reply buffer management functions which are based on random access to the
request and reply buffers. In this scheme the FM has access to the whole request and reply buffers and can
read and write at any location within these buffers.

Each command that is sent to the FM has a token associated with it that links to the request buffer and,
optionally, a reply buffer. When the command presented to the FM the token has a request buffer tied to it, but
there is no reply buffer, it is the responsibility of the FM to allocate a reply buffer appropriate for the specific
command. Reply buffers are optional, if the command only needs to return a status then no reply buffer is
required. Typically a Functionality Module command will not send back a reply message if the status is non
zero. The entire reply buffer is always returned to the caller, so the FM must set up the length before calling
SVC_SendReply.
The Message Random Access section contains the following functions:

> "SVC_GetReplyBuffer" on the next page

> "SVC_ConvertReqToReply" on page 109

> "SVC_SendReply" on page 110

> "SVC_ResizeReplyBuffer" on page 111

> "SVC_DiscardReplyBuffer" on page 112

> "SVC_GetUserReplyBuffLen" on page 113

> "SVC_GetRequest" on page 114

> "SVC_GetRequestLength" on page 115

> "SVC_GetReply" on page 116

> "SVC_GetReplyLength" on page 117

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 107

Chapter 14: HSM Functions Reference

SVC_GetReplyBuffer
Allocates a reply buffer of a specified length and associates it with a token. The contents of the allocated reply
buffer will be sent back to the host when SVC_SendReply() function is called.

Synopsis
#include <csa8hiface.h>
void *SVC_GetReplyBuffer(HI_MsgHandle token,

 uint32 replyLength);

Input Parameters

token The token identifying the request

replyLength The length of the reply buffer requested by the caller

Output Requirements

If the reply buffer is allocated successfully, a pointer to the allocated reply buffer is returned. Otherwise, NULL
is returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 108

Chapter 14: HSM Functions Reference

SVC_ConvertReqToReply
Treats the request buffer as the reply buffer for in-place processing of request data. The returned address of
the reply buffer is not necessarily equal to the request buffer address. However, the contents of the reply buffer
will always be the same as the contents of the request buffer.

Synopsis
#include <csa8hiface.h>
void *SVC_ConvertReqToReply(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

If a Reply Buffer is already allocated for the specified token, NULL is returned. Otherwise a pointer to the reply
buffer is returned. The reply buffer will contain the data in the request buffer.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 109

Chapter 14: HSM Functions Reference

SVC_SendReply
Returns the reply to the host. If there is a reply buffer associated with the token, the data recorded in reply
buffer is also returned.

Each call to a custom message handler MUST callSVC_SendReply once for each message processed.

Synopsis
#include <csa8hiface.h>
void SVC_SendReply(HI_MsgHandle token,

uint32 applicationStatus);

Input Parameters

token The token identifying the request

applicationStatus A status code for the execution of the request, which will
be reported to the host application. The value of this
parameter does not effect the reply delivery in any way.

Output Requirements

None.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 110

Chapter 14: HSM Functions Reference

SVC_ResizeReplyBuffer
Resizes the reply buffer associated with the specified token. The returned address need not be equal to the
previous address of the reply buffer. The contents of the matching parts of the old and new reply buffers will
always be the same.

Synopsis
#include <csa8hiface.h>
void *SVC_ResizeReplyBuffer(HI_MsgHandle token,

 uint32 replyLength);

Input Parameters

token The token identifying the request

replyLength The new length of the reply buffer requested by the
DestinationModule

Output Requirements

If the buffer is resized successfully, a pointer to the reply buffer is returned. Otherwise NULL is returned. The
old reply buffer is not freed in this case.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 111

Chapter 14: HSM Functions Reference

SVC_DiscardReplyBuffer
Discards the current reply buffer. This function is usually called when a processing error is detected after the
reply has been allocated.

Synopsis
#include <csa8hiface.h>
void SVC_DiscardReplyBuffer(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

None.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 112

Chapter 14: HSM Functions Reference

SVC_GetUserReplyBuffLen
Retrieves the length of the reply buffer the host application has. If the current reply length is larger than the
value returned by this function, part of the reply will be discarded on the way back.

Synopsis
#include <csa8hiface.h>
uint32 SVC_GetUserReplyBufLen(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

The number of bytes available to place the reply data in the host system is returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 113

Chapter 14: HSM Functions Reference

SVC_GetRequest
Retrieves the address of request data.

Synopsis
#include <csa8hiface.h>
void *SVC_GetRequest(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

The request buffer address is returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 114

Chapter 14: HSM Functions Reference

SVC_GetRequestLength
Retrieves the length of request data in number of bytes.

Synopsis
#include <csa8hiface.h>
uint32 SVC_GetRequestLength(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

The number of bytes in the request buffer is returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 115

Chapter 14: HSM Functions Reference

SVC_GetReply
Retrieves the address of current reply buffer.

Synopsis
#include <csa8hiface.h>
void *SVC_GetReply(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

If there is a reply buffer associated with the token, the reply buffer address is returned. Otherwise, NULL is
returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 116

Chapter 14: HSM Functions Reference

SVC_GetReplyLength
Retrieves the length of reply data in number of bytes.

Synopsis
#include <csa8hiface.h>
uint32 SVC_GetReplyLength(HI_MsgHandle token);

Input Parameters

token The token identifying the request

Output Requirements

If there is a reply buffer associated with the token, the number of bytes in the reply buffer is returned.
Otherwise, 0 is returned.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 117

Chapter 14: HSM Functions Reference

Functionality Module Dispatch Switcher Functions
This section describes the firmware message dispatch management functions. There are two types of custom
message dispatch functions and a FM designer needs to choose one and only one for their own FM. FM
designers should use the type of dispatch function that best suits their source code.

When the FM registers its dispatch function it needs to specify the FMID of the current FM. The function
GetFMID() is provided to allow the FM writer to easily get this value.

The Functionality Module Dispatch Switcher section contains the following functions:

> "FMSW_RegisterRandomDispatch" on the next page

> "FMSW_RegisterStreamDispatch" on page 120

Random Access Dispatch Function:

This is the older schema best suited for PTK style FMs. It allows the FM designer full random access to the
contents of the request buffer and the response buffer.

Streaming Access Dispatch Function:

This is the newer schema that is used by the sample FMs. It allows the FM designer to read from the request
buffer and write to the response buffer without needing to keep track of the current read and write points.

The read and write functions will provide automatic Endian conversion to integer values.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 118

Chapter 14: HSM Functions Reference

FMSW_RegisterRandomDispatch
Registers a Custom Command handler routine to the HSM. When a custom request is sent to the HSM with a
FM ID equal to the fmNumber, the Dispatch function is called.

The type FMSW_RandomDispatchFn_t is a pointer to a function such as the following.
void RandomDispatchHandler(FmMsgHandle token,

 void *reqBuffer,
 uint32_t reqLength);

The token is an opaque handle value identifying the request. The same token must be passed to SVC_Xxx()
functions.

The Dispatch function returns void – it is the responsibility of the Dispatch function to callSVC_SendReply() to
return the request response and to specify the return error code for the command.

The pair (reqBuffer, reqLength) defines the concatenated data that has been received on the request. See
"Message Dispatch API Reference" on page 80 function for details on custom request dispatching.

This function is used when an FM exports a custom API. It is usually called from the startup() function.

Synopsis
#include <fmsw.h>
FMSW_STATUS FMSW_RegisterRandomDispatch(
FMSW_FmNumber_t fmNumber,
FMSW_RandomDispatchFn_t dispatch);

Input Parameters

fmNumber The FM identification number

dispatch Pointer on custom request handler function

Output Requirements

Return Value:

FMSW_OK The function was registered successfully

FMSW_BAD_POINTER The function pointer is invalid

FMSW_INSUFFICIENT_RESOURCES Not enoughmemory to complete operation

FMSW_BAD_FM_NUMBER The FM number is incorrect

FMSW_ALREADY REGISTERED A dispatch function was already registered

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 119

Chapter 14: HSM Functions Reference

FMSW_RegisterStreamDispatch
This function registers a Custom Command handler routine to the HSM. When a custom request is sent to the
HSM with a FM ID equal to the fmNumber, the Dispatch function is called.

The type FMSW_StreamDispatchFn_t is a pointer to a function like this following example:
int StreamDispatchHandler(FmMsgHandle token);

The token is an opaque handle value identifying the request. The same token must be passed to CL_Xxx()
functions. After the Dispatch function returns the HSM will take the return value and send the return value and
response buffer back to the caller.

This function is used when an FM exports a custom API. It is usually called from the startup() function.

Synopsis
#include <fmsw.h>
FMSW_STATUS FMSW_RegisterStreamDispatch(
FMSW_FmNumber_t fmNumber,
FMSW_StreamDispatchFn_t dispatch);

Input Parameters

fmNumber The FM identification number

dispatch Pointer on custom request handler function

Output Requirements

Return Value:

FMSW_OK The function was registered successfully

FMSW_BAD_POINTER The function pointer is invalid

FMSW_INSUFFICIENT_RESOURCES Not enoughmemory to complete operation

FMSW_BAD_FM_NUMBER The FM number is incorrect

FMSW_ALREADY REGISTERED A dispatch function was already registered

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 120

Chapter 14: HSM Functions Reference

FM Support Functions
This section contains some support functions that can be used by the FM developer:

The Functionality Module Support section contains the following functions:

> "FM_GetNDRandom" on the next page

> "FM_AddToExtLog" on page 123

> "FM_GetHsmInfo" on page 123

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 121

Chapter 14: HSM Functions Reference

FM_GetNDRandom
Returns cryptographic quality (non-deterministic) random objects.

Synopsis
#include <fm.h>
int FM_GetNDRandom(char * out,

 int len);

Input Parameters

out Pointer to output buffer

len number of bytes to store in "out"

Output Requirements

Return Value: number of bytes returned (should equal ‘len’)

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 122

Chapter 14: HSM Functions Reference

FM_AddToExtLog
Have the FM add a message to the HSM Audit trail. The Audit trail is a secured stream of messages that are
managed by the HSM Audit officer..

NOTE printf writes to the HSM message stream and is best suited for debugging FMs.

Synopsis
#include <fm.h>
int FM_AddToExtLog(char * format,

 …);

Input Parameters

format printf style format string

Return Code

Function Code Qualification

0 The function was successful.

FM_GetHsmInfo
Fetch information about the CORE.

Synopsis
#include <fm.h>
MD_RV FM_GetHsmInfo(MD_Info_t infotype,

 void *pValue,
 uint32 valueLen);

See "MD_GetHsmInfo" on page 92 for more details of types of information that can be fetched.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 123

Chapter 14: HSM Functions Reference

Serial Communication Functions
This section contains functions for using the serial ports on the HSM.

The Serial Communications section contains the following functions:

> "SERIAL_SendData" on the next page

> "SERIAL_RecieveData" on page 126

> "SERIAL_WaitReply" on page 127

> "SERIAL_FlushRX" on page 128

> "SERIAL_GetNumPorts" on page 129

> "SERIAL_InitPort" on page 130

> "SERIAL_GetControlLines" on page 131

> "SERIAL_SetControlLines" on page 132

> "SERIAL_SetMode" on page 133

> "SERIAL_Open" on page 134

> "SERIAL_Close" on page 135

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 124

Chapter 14: HSM Functions Reference

SERIAL_SendData

Synopsis
#include <serial.h>
int SERIAL_SendData(int port,

 unsigned char *buf,
 int bufLen,
 long timeout);

Description
Sends a character array over a serial port.

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

buf Pointer to an array of bytes to be sent

bufLen length of the buffer, in bytes

timeout Number of milliseconds to wait for a character to be sent.
A timeout of -1 will use the default timeout.
Default timeout is 2000ms.

NOTE The timeout value refers to the total
time taken to send the data. For example, a 2
millisecond timeout for sending 10 characters
in 9600 baud setting will always fail – the
timeout must be at least 10milliseconds.

Return Code

Function Code Qualification

0 The characters were sent successfully.

-1 There was an error in operation.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 125

Chapter 14: HSM Functions Reference

SERIAL_RecieveData
Retrieves an arbitrary length of characters from the serial port.

Synopsis
#include <serial.h>
int SERIAL_ReceiveData(int port,

 unsigned char *buf,
 int *len,
 int bufLen,
 long timeout);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

buf Pointer to an array of bytes to be sent

len Pointer to an integer which will hold the actual number of
characters received

bufLen length of the buffer, in bytes

timeout Number of milliseconds to wait for a character to appear.
A timeout of -1 will use the default timeout.
The default timeout is
4000ms + (10ms * number of characters)
Example, reading 25 characters:
4000 + (10 * 25) = 4250ms = 4.25s

Return Code:

Function Code Qualification

0 Requested number of bytes has been received.

-1 Less than the requested number of bytes has been
received.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 126

Chapter 14: HSM Functions Reference

SERIAL_WaitReply
Waits for a character to appear on the serial port.

Synopsis
#include <serial.h>
int SERIAL_WaitReply(int port);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

Return Code

Function Code Qualification

0 There is a character at the serial port.

-1 Timeout occurred and no data appeared.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 127

Chapter 14: HSM Functions Reference

SERIAL_FlushRX
Flushes the receive buffer of the specified serial port.

Synopsis
#include <serial.h>
void SERIAL_FlushRX(int port);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 128

Chapter 14: HSM Functions Reference

SERIAL_GetNumPorts
Returns the number of serial ports available.

Synopsis
#include <serial.h>
int SERIAL_GetNumPorts(void);

Parameters

None.

Return Value

The number of serial ports available.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 129

Chapter 14: HSM Functions Reference

SERIAL_InitPort
Initializes the specified serial port to the parameters “9600 8N1” with no handshake.

Synopsis
#include <serial.h>
int SERIAL_InitPort(int port);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

Return Code:

Function Code Qualification

0 The serial port was initialized successfully

-1 There was an error initializing the port.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 130

Chapter 14: HSM Functions Reference

SERIAL_GetControlLines
Reads the current state of the control lines, and writes a bitmap into the address pointed to by 'val'. Only the
input bits (CTS, DSR, DCD, RI) reflect the current status of control lines.

Synopsis
#include <serial.h>
int SERIAL_GetControlLines(int port,

 unsigned char *bitmap);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

bitmap Pointer to a character, which will have the resulting
bitmap

Return Code:

Function Code Qualification

0 The function succeeded

-1 The function failed. The value in the bitmap is not valid.

Comments:
#define MCL_DSR 0x01
#define MCL_DTR 0x02
#define MCL_RTS 0x04
#define MCL_CTS 0x08
#define MCL_DCD 0x10
#define MCL_RI 0x20
#define MCL_OP_SET 1
#define MCL_OP_CLEAR 2

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 131

Chapter 14: HSM Functions Reference

SERIAL_SetControlLines
Modifies the control lines (DTR/RTS).

Synopsis
#include <serial.h>
int SERIAL_SetControlLines(int port,

 unsigned char bitmap,
 int op);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

bitmap Bitmap of control lines to bemodified . Input control lines
are silently ignored

op One of MCL_OP_SET/MCL_OP_CLEAR control lines
specified in the bitmap parameter

Return Code:

Function Code Qualification

0 The function was successful.

-1 The function failed.

Comments
#define MCL_DSR 0x01
#define MCL_DTR 0x02
#define MCL_RTS 0x04
#define MCL_CTS 0x08
#define MCL_DCD 0x10
#define MCL_RI 0x20
#define MCL_OP_SET 1
#define MCL_OP_CLEAR 2

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 132

Chapter 14: HSM Functions Reference

SERIAL_SetMode
Used to set the serial port communication parameters.

Synopsis
#include <serial.h>
int SERIAL_SetMode(int port,

int baud,
 int numBits,
 SERIAL_Parity parity,
 int numStop,
 SERIAL_HSMode hs);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

baud baud rate

numBits Number of bits in a character. Should be 7 or 8

parity One of the following:
SERIAL_PARITY_NONE
SERIAL_PARITY_ODD
SERIAL_PARITY_EVEN
SERIAL_PARITY_ONE
SERIAL_PARITY_ZERO

numStop Number of stop bits in a character. Should be 1 or 2

hs Handshake type. Should be one of the following:
SERIAL_HS_NONE *
SERIAL_HS_RTSCTS
SERIAL_HS_XON_XOFF

NOTE *Serial flow control is not
implemented in the current HSM firmware.
This value should be set to SERIAL_HS_
NONE.

Return Code

Function Code Qualification

0 Mode changed successfully.

-1 There was an error in operation.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 133

Chapter 14: HSM Functions Reference

SERIAL_Open
Gets a weak ownership of the port. Subsequent calls to this function with the same parameter will fail unless
SERIAL_ClosePort() is called for the same port.

Synopsis
#include <serial.h>
int SERIAL_Open(int port);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

Return Code:

Function Code Qualification

0 Port opened successfully.

-1 An error prevented the serial port from opening.

Comments

CAUTION! This function in no way guarantees safe sharing of the ports. Any application can
callSERIAL_Close() to get the access, or can use SERIAL functions without opening the
port first.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 134

Chapter 14: HSM Functions Reference

SERIAL_Close
Releases ownership of the serial port.

Synopsis
#include <serial.h>
void SERIAL_Close(int port);

Parameters

port Serial port number (0 based). Specify port 0 to redirect
the output to the HSM trace log

Comments

CAUTION! This function in no way guarantees safe sharing of the ports. Any application can
callSERIAL_Close() to get the access, or can use SERIAL functions without opening the
port first.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 135

Chapter 14: HSM Functions Reference

High Resolution Timer Functions
The High Resolution Timer section contains the following functions:

> "THR_BeginTiming" on the next page

> "THR_UpdateTiming " on page 138
These functions can be used to measure time intervals with very high resolution. The accuracy of the timing is
around 1 microsecond.

These functions both use the structure, THR_TIME. This structure contains two parameters

Parameter Value

secs Time value in seconds

ns Time value in nanoseconds. The nanoseconds value
must always be less than 109 (which is equal to 1
second)

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 136

Chapter 14: HSM Functions Reference

THR_BeginTiming
Starts a high-resolution timing operation. The timing resolution is 20ns, and the accuracy of the timer is about 1
microsecond.

Synopsis
#include <timing.h>
void THR_BeginTiming(THR_TIME *start);

Input Parameters

start Address of the THR_TIME structure, which will keep the
information needed tomeasure the timing interval

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 137

Chapter 14: HSM Functions Reference

THR_UpdateTiming
Updates the timing operation. Since the start structure is not modified, it can be used multiple times with the
same set of parameters.

Synopsis
#include <timing.h>
void THR_UpdateTiming(const THR_TIME *start,

 THR_TIME*elapsed);

Input Parameters

start Address of the THR_TIME structure, which will keep the
information needed tomeasure the timing interval

elapsed Address of the THR_TIME structure, which will contain
the elapsed time since THR_BeginTiming() was called.
The contents of this structure will be overwritten.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 138

Chapter 14: HSM Functions Reference

Current Application ID functions
These functions can be used to obtain and manipulate the Application ID of the calling application.

The AppID is used by the HSM core to identify the application making the call. It identifies which Cryptoki
sessions are valid for the specified caller.

The Current Applications ID section contains the following functions:

> "FM_GetCurrentAppId" on the next page

> "FM_SetCurrentAppId" on page 141

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 139

Chapter 14: HSM Functions Reference

FM_GetCurrentAppId
Returns the AppID recorded in the current request originated from the host side. If there is no active request
(e.g. a call from Startup() function), FM_DEFAULT_PID is returned.

Synopsis
#include <fmappid.h>
Uint64_t FM_GetCurrentAppId(void);

Return Code

The AppId of the application which originated the current request to the FM.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 140

Chapter 14: HSM Functions Reference

FM_SetCurrentAppId
Overrides the AppId recorded in the current request originated from the host side. If there is no active request
the function does nothing.

Synopsis
#include <fmappid.h>
void FM_SetCurrentPid(uint64_t appid);

Parameters

appid The new AppId to be recorded in the request he new A

Return Code

none

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 141

Chapter 14: HSM Functions Reference

PKCS#11 StateManagement Functions
The functions listed in this section allow the FM to ask the firmware to associate user data with certain firmware
structures. The firmware guarantees the cleanup of the associated buffer, when the structure in question is
destroyed.

The freeing of the user data is performed by a callback to a user function. If the data is allocated usingmalloc
(), and it contains no pointers to other allocated structures, the free function is typically the standard free()
function.

The PKCS#11 State Management section includes the following functions:

> "FM_SetSessionUserData" on the next page

> "FM_GetSessionUserData" on page 144

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 142

Chapter 14: HSM Functions Reference

FM_SetSessionUserData
Associates user data with a session handle. The data is associated with the (PID, hSession) pair by the library.
The function specified in this call will be called to free the user data if the session is closed (via a C_
CloseSession() or a C_CloseAllSessions() call), or the application owning the session finalizes.
If the session handle already contains user data it will be freed, by calling the current free function, before the
new data association is created.

Synopsis
#include <objstate.h>
CK_RV FM_SetSessionUserData(FmNumber_t fmNo,

 CK_SESSION_HANDLE hSession,
 CK_VOID_PTR userData,
 CK_VOID (*freeUserData)(CK_VOID_PTR));

Parameters

fmNo The FM number of the caller. It must be the FM_
NUMBER_CUSTOM_FM in this release of the software.

hSession A session handle, which was obtained from anC_
OpenSession () call. The validity of the parameter is
checked.

userData Address of thememory block that will be associated with
the session handle. If it is NULL, the current associated
buffer is freed.

freeUserData Address of a function that will be called to free the
userData if the library decides that it should be freed.
Valuemust not be NULL if userData is not NULL

Return Code

The function returns the following codes:

Function Code Qualification

CKR_OK The operation was successful

CKR_ARGUMENTS_BAD Free user date was NULL or fmNowas not FM_
NUMBER_CUSTOM_FM

CKR_SESSION_HANDLE_INVALID The specified session handle is invalid

CKR_CRYPTOKI_NOT_INITIALIZED Cryptoki is not yet initialized

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 143

Chapter 14: HSM Functions Reference

FM_GetSessionUserData
Obtains the userData associated with the specified session handle. If there are no associated buffers, NULL is
returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_GetSessionUserData(FmNumber_t fmNo,

 CK_SESSION_HANDLE hSession,
 CK_VOID_PTR_PTR ppUserData);

Parameters

fmNo The FM number of the caller. It must be FM_NUMBER_
CUSTOM_FM in this release of the software

hSession A session handle, which was obtained from anC_
OpenSession() call. The validity of this parameter is
checked.

ppUserData Address of a variable (of type CK_VOID_PTR) which will
contain the address of the user data if this function
returns CKR_OK. Valuemust not be NULL.

Return Code

The function returns the following codes:

Function Code Qualification

CKR_OK The operation was successful. The associated user data
is placed in the variable specified by the ppUserData.

CKR_ARGUMENTS_BAD ppUserData was NULL or fmNowas not FM_
NUMBER_CUSTOM_FM

CKR_SESSION_HANDLE_INVALID The specified session handle is invalid

CKR_CRYPTOKI_NOT_INITIALIZED Cryptoki is not yet initialized

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 144

Chapter 14: HSM Functions Reference

FMHeader DefinitionMacro

DEFINE_FM_HEADER
Simplifies the definition of the FM header structure and also ensures that the header is placed in the
appropriate location in the FM binary image.

The FM header contains information which is used at runtime and must be present in all FMs.

Synopsis
#include <mkfmhdr.h>

Usage

DEFINE_FM_HEADER(FM_NUMBER, FM_VERSION, FM_SERIAL_NO, MANUFACTURER_ID, PRODUCT_
ID);

FM_NUMBER Must be themanifest constant FM_NUMBER_CUSTOM_FM in this software
version.

FM_VERSION A 16 bit integer, of the form 0xMMmm, wheremm is theminor number, andMM
is themajor number. (It is displayed as VMM.mm in ctfm)

SERIAL_NO An integer representing the serial number of the FM

MANUFACTURER_ID A string of at most 32 characters, which contains themanufacturer name. This
does not need to be NULL terminated.

PRODUCT_ID A string consisting of amaximum of 16 characters, which contains the FM
name. This does not need to be NULL terminated.

SafeNet Luna PCIe HSM 10.1 FMSDKProgrammingGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 145

	Document Information
	Preface: About the FM SDK Programming Guide
	Customer Release Notes
	Audience
	Document Conventions
	Support Contacts

	Chapter 1: Setup
	Software Installation
	Requirements

	Chapter 2: FM Architecture
	FM Support within the HSM Hardware
	FM Support in Emulation Mode
	Multiple FMs
	Memory for FMs

	Chapter 3: FM Development
	Lifecycle Overview
	Initial Development
	Adapter Build
	Production Build
	Key Management
	Contents of the Luna FM SDK package directory
	SDK Installation Tips
	Set the Environment

	Protecting Data Storage of FM
	Scatter Gather FM Message Dispatching
	Handling Host Processes IDs
	C_CloseAllSessions - Notes

	Memory Alignment Issues
	Memory Endian Issues
	Compiling FMs
	Include Path
	PPO Compatibility INCLUDE Files
	C_Flags
	L_Flags

	Building Applications that Talk to FMs
	INCLUDE PATH
	PPO Compatibity INCLUDE Files
	L_FLAGS

	Chapter 4: Comparing PTK to Luna FM SDK, and Porting FMs
	Summary
	HSM Management and Security Features
	Configuration
	Roles
	Authentication and Activation
	Tool Set
	Per Partition SO introduced by Admin

	FM Programming APIs
	FMCE API and CipherObj
	Public Key Certificate Management
	Cryptoki Attributes
	Client and FM Extension Functions
	JHSM
	Compatibility Header Files

	PTK Function Patching
	OS_GetCprovFuncTable()
	Administration Patching
	Custom Mechanisms
	FM_GetCurrentOid() and FM_GetCurrentPid()
	FM_SetAppUserData, FM_SetTokenUserData, FM_SetTokenAppUserData, FM_SetSlotUse...
	OS_GetCprovFuncTable()

	Chapter 5: FM Samples
	Signing FM Images
	Export a Self-Signed Certificate and Copy to Other HSMs
	Sample: skeleton
	skeleton Test Application
	Sample: pinenc:
	pinenc Test Application
	Sample: wrap-comp:
	wrap-comp Test Application

	Chapter 6: Utilities Reference
	cmu
	ctfm
	mkfm
	fmrecover

	Chapter 7: Cryptographic Engine
	Chapter 8: Cipher Objects
	Chapter 9: Hash Objects
	Chapter 10: Setting Privilege Level
	Chapter 11: SMFS Reference
	SmFsCreateDir
	SmFsCloseFile
	SmFsCalcFree
	SmFsCreateFile
	SmFsCreateFileClr
	SmFsDeleteFile
	SmFsFindFile
	SmFsFindFileClose
	SmFsFindFileInit
	SmFsGetFileAttr
	SmFsGetOpenFileAttr
	SmFsOpenFile
	SmFsReadFile
	SmFsRenameFile
	SmFsWriteFile

	Chapter 12: FMDebug Reference
	printf/vprintf
	dump

	Chapter 13: Message Dispatch API Reference
	MD_Initialize
	MD_Finalize
	MD_GetHsmCount
	MD_GetHsmState
	MD_ResetHsm
	MD_SendRecieve
	MD_GetParameter
	MD_GetEmbeddedSlotID
	MD_FmIdFromName
	MD_GetHsmInfo
	Information Types

	MD_GetHsmIndexForSlot

	Chapter 14: HSM Functions Reference
	Message Streaming Functions
	SVC_IO_Read
	SVC_IO_Write
	SVC_IO_GetReadPointer
	SVC_IO_GetReadBuffer
	SVC_IO_UpdateReadPointer
	SVC_IO_GetWritePointer
	SVC_IO_GetWriteBuffer
	SVC_IO_UpdateWritePointer

	HIFACE Reply Management Functions
	SVC_GetReplyBuffer
	SVC_ConvertReqToReply
	SVC_SendReply
	SVC_ResizeReplyBuffer
	SVC_DiscardReplyBuffer
	SVC_GetUserReplyBuffLen
	SVC_GetRequest
	SVC_GetRequestLength
	SVC_GetReply
	SVC_GetReplyLength

	Functionality Module Dispatch Switcher Functions
	FMSW_RegisterRandomDispatch
	FMSW_RegisterStreamDispatch

	FM Support Functions
	FM_GetNDRandom
	FM_AddToExtLog
	FM_GetHsmInfo

	Serial Communication Functions
	SERIAL_SendData
	Description
	Parameters
	SERIAL_RecieveData
	SERIAL_WaitReply
	SERIAL_FlushRX
	SERIAL_GetNumPorts
	SERIAL_InitPort
	SERIAL_GetControlLines
	SERIAL_SetControlLines
	SERIAL_SetMode
	SERIAL_Open
	SERIAL_Close

	High Resolution Timer Functions
	THR_BeginTiming
	THR_UpdateTiming

	Current Application ID functions
	FM_GetCurrentAppId
	FM_SetCurrentAppId

	PKCS#11 State Management Functions
	FM_SetSessionUserData
	FM_GetSessionUserData

	FM Header Definition Macro

